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Figure 1: More accurate PB modeling considering (a) a bone-like
shape [KHS00] or (b) PB junctions [WP96].

1. Accurate modeling of Plateau borders

In our model, the cross-section of the Plateau border is approxi-
mated as three circular arcs. The width of a PB along the axis is
fixed as well. A more realistic PB has a bone-like shape [KHS00]
as shown in Fig. 1. Besides, no special treatment is applied to the
junctions of Plateau borders. Accurate modeling of the foam struc-
ture, including the thin films and Plateau borders, can be performed
using triangulation-based methods [Bra92]. We leave it for future
work.

2. Implementation details

2.1. Foam structure details

The liquid foam model is generated by the power diagram with-
out performing any simulation. To control the bubble density, we
employ 3D Poisson disk sampling [Yuk15]. Additionally, the gaps
among bubbles are processed, similar to Yan and Wonka [YW13],
aiming for matching real-world conditions.

Our PB is modeled using three tangent cylinders. In the foam
structure, in addition to the PBs, we introduce two types of film
geometries (see Fig. 2): the disk intersected by a polygon, and the
sphere intersected by a polyhedron. We implement them procedu-
rally. In the case of the disk intersected by a polygon, we disregard
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Figure 2: Details of primitives in our foam structure. We have two
types of film geometries: a disk cut by a polygon (a) and a sphere
cut by a polyhedron. They are derived from the power diagram (b).

Fig. Primitives
1 1183K
12 (Top) 369K
12 (Bottom) 462K
13 101K
15 285K
17 159K

Table 1: Number of primitives contained within the foams in each
scene.

the intersection points that lie outside both the disk and the poly-
gon. For spheres intersected by a polyhedron, we preserve the inter-
section points on the sphere while lying within the polyhedron. In
Tab. 1, we report the number of primitives contained in the foams
in each of our scenes.

2.2. Network architecture details

We list the encoding functions for some variables in Tab. 2. For
outputs of Pos-Net which are used as parameters of Laplace distri-
butions, we provide the decoding for them in Tab. 3.
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Parameter Sampling Function Encoding

η 1.3+0.15∗U(0,1) η−1.3
0.15

l′ 10−U(0,2) − log10(l
′)

αs 1−0.5∗U(0,1)3 3
√

2−2αs
g U(0,0.95) eg

γ1 U( 2π

3 ,π) Frequency encoding
γ2 U(π− γ1,γ1) Frequency encoding
xi U(0,1) Frequency encoding
zi U(0,1) SH encoding
φi U(0,2π) SH encoding

Table 2: Sampling functions and encoding for inputs of our net-
works. U(x,y) represents a continuous uniform distribution in [x,y].
Note that the encoding of outgoing parameters is the same as in-
coming parameters, and we do not list them in this table.

Parameter Pos-Net output Decoding
µ ∈ R3 s1 ∈ R3 sigmoid(s1)

λ ∈ R3 s2 ∈ R3 es2

a ∈ R3 s3 ∈ R3 es3

Table 3: Decoding scheme for Pos-Net outputs.

2.3. Data preparation

The sampling functions we use for generating data are listed in
Tab. 2.

3. Accuracy of networks.

In Fig. 3 and Fig. 4, we provide more results to show the accu-
racy of our three networks on position and direction distributions.
The Eval-Net matches the GTs accurately across multiple parame-
ter sets. Pos-Net and Dir-Net are able to approximate the GTs ef-
fectively.
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Figure 3: The validation of our Eval-Net and Pos-Net on position distribution. Starting with a set of initial parameters (η = 1.33, l′ = 0.02,
αs = 1, g = 0.9, γ1 =

2π

3 , γ2 =
2π

3 , ci = 0.75, hi = 0.9, φi = 3.14), we show the results in each row by varying one parameter at a time while
keeping the others fixed. Eval-Net can approximately match the GT. Pos-Net can closely approximate the position distribution of Eval-Net.
Note that when αs < 1, the results of GT and Eval-Net are not normalized, while Pos-Net produces normalized probability distributions.
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Figure 4: The validation of our Eval-Net and Dir-Net on direction distribution. We choose three sets of parameters and show the direction
distribution at different co. Our Eval-Net approximates the GTs with high accuracy. Our Dir-Net can effectively fit the direction distribution
of Eval-Net.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.


