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Figure 1: We introduce the Plateau border structure into liquid foam rendering at the geometric level. We then propose a bidirectional
Plateau-border scattering distribution function (BPSDF) to aggregate the scattering within a Plateau border and shorten the path length.
By designing a neural representation of the BPSDF, our model can render liquid foams both realistically and efficiently. Our BPSDF can
significantly reduce noise compared to volume rendering across various media, from high-scattering to high-absorption and from isotropic
to anisotropic media.

Abstract
Liquid foams are a common phenomenon in our daily life. In computer graphics, rendering realistic foams remains challenging
due to their complex geometry and light interactions within the foam. While the structure of the liquid foams has been well
studied in the field of physics, it’s rarely leveraged for rendering, even though it is essential for achieving realistic appearances.
In physics, the intersection of two bubbles creates a liquid-carrying channel known as the Plateau border (PB). In this paper,
we introduce the Plateau border into liquid foam rendering by explicitly modeling it at the geometric level. Although modeling
of PBs enhances visual realism with path tracing, it suffers from extensive rendering costs due to multiple scattering effects
within the medium contained in the PB. To tackle this, we propose a novel scattering function that models the aggregation of
scattering within the medium surrounded by a Plateau border, termed the bidirectional Plateau-border scattering distribution
function (BPSDF). Since no analytical formulation can be derived for the BPSDF, we propose a neural representation, together
with importance sampling and probability distribution functions, to enable Monte Carlo-based rendering. By integrating our
BPSDF into path tracing, our method achieves both realistic and efficient rendering of liquid foams, producing images with
high fidelity.

CCS Concepts
• Computing methodologies → Rendering; Reflectance modeling;
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1. Introduction

Liquid foams are common natural phenomena in daily life, such as
the bubbles on top of beverages. Simulating and rendering these
phenomena are both important and fascinating in the fields of
physics and computer graphics. Unfortunately, realistically render-
ing liquid foams remains challenging due to their unique structure
and the complex interactions of light as it travels through the bubble
films and surrounding medium. In this paper, we address the issue
of realistically and efficiently rendering a collection of bubbles in a
liquid medium.

Existing bubble rendering approaches [IMN04; GSP*19;
Mor03] have made efforts on thin-film rendering of individual bub-
bles, taking into account light interference, while another set of
works [BSW10; vdLGS09] focus on real-time rendering of fluids
in screen space. However, neither can render liquid foam realisti-
cally, as its visual appearance is highly related to the foam structure.
At the intersection of two bubbles, three films converge in a line to
form a liquid-carrying channel known as a Plateau border (PB) (see
Fig. 2) in physics. The PBs are crucial for both the dynamic behav-
ior and visual characteristics of foams, as they contain most of the
liquid in the foam. The importance of PB for liquid foam render-
ing has been identified by Kück et al. [KVG02] and Greenwood
et al. [GH04]. Unfortunately, these works approximate the visual
effects of Plateau borders using a simplified shading model, rather
than accurately modeling the detailed geometry, resulting in less
realistic renderings.

In this paper, we target high-fidelity liquid foam rendering while
maintaining acceptable time cost. For this, we propose to model
the Plateau border structure explicitly between bubbles, where the
cross-sectional shape is represented by three circular arcs [LL65;
KR87; BKD*08] (see Fig. 2) following Plateau’s laws in the field
of physics. To our knowledge, this is the first time the Plateau bor-
der structure has been modeled explicitly for liquid foam rendering.
While this explicit geometric modeling of PBs can bring high level
of realism with Monte Carlo rendering, it suffers from extensive
rendering costs due to the medium gathered in the Plateau border.
To this end, we propose a novel scattering function for a Plateau
border, referred to as the bidirectional Plateau-border scattering
distribution function (BPSDF). This function models the scatter-
ing that occurs within the medium encircled by the Plateau bor-
der. Since there is no existing analytical formulation, we propose
a neural representation of the BPSDF, which is parameterized on
the PB shape, medium properties, and ray queries (including both
incoming and outgoing positions and directions). Specifically, we
design a set of lightweight neural functions for BPSDF evaluation,
importance sampling, and probability distribution function (PDF)
evaluation. Thanks to this neural representation of the Plateau bor-
der, we can efficiently aggregate scattering within a Plateau border,
significantly reducing path lengths during Monte Carlo rendering.
Consequentially, the liquid foam can be rendered both realistically
and efficiently. Note that our work mainly focuses on the rendering
of liquid foams, and the simulation of foam behaviors is beyond
our scope. We position our work in the geometric optics domain,
although the interference caused by thin films is orthogonal to our
work and can be integrated directly. To summarize, our main con-
tributions include:

(a) (b) (c)

Figure 2: Illustration of intersecting bubbles and PBs in (a) 3D
and (b) 2D, with a zoom-in for the cross-section of a PB in (c).

• a realistic liquid foam rendering approach by explicitly model-
ing the Plateau border structure,

• a novel scattering function, BPSDF, defined for Plateau borders
that aggregates scattering and simplifies light transport in liquid
foam, and

• a neural representation of the BPSDF that facilitates efficient
evaluation, importance sampling, and PDF computation, en-
abling effective light transport in liquid foam.

2. Related work

Foam physics. Exploring the physics of foam has attracted math-
ematicians and physicists for centuries. Foams in daily life exhibit
significantly different geometric and visual behaviors due to the
complex physics and properties of different liquids. In general,
foams can be classified into dry foams and wet foams by the liquid
fraction, i.e. the amount of liquid contained in the foam [WH00;
CCE*13]. For dry foams that contain little liquid, the Belgian
physicist Joseph Plateau developed the famous Plateau equilibrium
rules to describe their structures [Pla73]. Wet foams are more dif-
ficult to model since there is sufficient liquid to deform the shapes
of bubbles and form more complex structures.

The faces of bubbles are thin films that are curved because of
pressure differences. According to Plateau’s rules, the films inter-
sect in threes and form liquid-carrying channels, which are known
as Plateau borders (Fig. 2). Previous works approximated the cross-
section of a Plateau border as a triangle with concave sides, and
each side is a circular arc [CCE*13; Ngu02; GŻCO04]. The real
shape of a Plateau border is hard to determine because of the sur-
face tension and gravity of the liquid [STW08; Bra92; XWPA17].
We make the same approximation about the Plateau border’s shape
as previous works and leave the modeling of more complex shapes
as future works.

Foam simulation and rendering. The simulation and rendering
of bubbles and foams in computer graphics have attracted con-
siderable attention. Simulation efforts range from capturing thin
film thickness [HIK*20; DWK*22; ISN*20] to animating foam
flow dynamics [IYAH17; WFS22; QLY*23]. In the rendering field,
main efforts have been made on light interference from soap film
thickness [Mor03; IMN04; GSP*19] and real-time foam render-
ing in the screen space [vdLGS09; BSW10; DCGG11]. Droske et
al. [DHV*23] introduce path tracing in water and some special ap-
pearances like bubbles.
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Figure 3: Left: the cross-section of a PB is modeled as three tan-
gent circular arcs. Middle: within a PB, there are two types of light
paths: the specular path (red), which consists of surface interac-
tions only, and the scattered path (green), which includes at least
one scattering event within the medium. Right: different types of
light paths within a PB. Surface events are denoted by orange dots,
and medium events are denoted by blue dots.

The closest work to ours is by Kück et al. [KVG02] and Green-
wood et al. [GH04]. They identified the impact of Plateau borders
on the characteristic visual properties of liquid foams. However,
they modeled the scattering in Plateau borders by utilizing an em-
pirical shading model, which sacrificed visual realism and richness
of liquid types. In contrast, our method models Plateau borders ex-
plicitly at the geometric level, which enhances realism and allows
for rendering various foam types by controlling the medium in the
PB.

Neural appearances. Neural networks are widely used in ma-
terial representation. Many works focus on using neural net-
works for material representation and enhancing the effectiveness
and richness [FR22; TUGM22; XZJM24; SRRW21; KMX*21;
KWM*22a]. Neural representations are utilized for a wide range
of materials, like measured BRDF [HGC*20; ZZW*21], layered
materials [WJHY22; FWH*22; GLH*23; ZRW*24], woven fab-
ric [CWW24] and fur [ZZW*22]. There are also many works
using neural compression of the bidirectional texture function
(BTF) [RJGW19; RGJW20; FWH*23; KWM*22b; XMWY24]. In
addition, the importance sampling technique for neural materials
has attracted considerable attention in recent studies [XWH*23;
FBL*24; LHL*24]. Neural networks also have broad applica-
tions in simulating subsurface events [VKJ19; TTJ*24; TFRJ24;
LGH*24; ZK24; LHW21] and volume rendering [HYL*23;
KMM*17]. Different from these works, our method designs neural
networks specialized for the PB structure, considering its charac-
teristics, including the evaluation, importance sampling, and PDFs.

3. Preliminaries

In this section, we briefly review the modeling of Plateau borders
(Sec. 3.1) and the optical effects in liquid foam (Sec. 3.2).

3.1. Plateau border modeling

Accurately computing the shape of a PB is challenging, as it re-
quires solving for factors such as surface tension and gravity. In
physics, a common method to approximate the cross-section of a
PB is to use three tangent circular arcs, as shown in Fig. 2 [LL65;
KR87; BKD*08], as a PB is formed by the intersection of three
films.

A PB can be determined by its cross-section and a Plateau axis,
which is perpendicular to the cross-section. The center of the PB
cross-section is identified as the incenter of the triangle formed by
centers of the three tangent circles, and its radius is represented as
rP, which remains constant along the Plateau axis. The lines drawn
from the center to the three tangent points define three directions,
denoted as d1, d2, and d3. Each pair of these directions has an an-
gle between them, defined as γ1, γ2, and γ3 = 2π − γ1 − γ2 (see
Fig. 3). For a finite-length PB, the center of the cross-section at the
midpoint along the Plateau axis determines the PB’s center.

3.2. Optical effects in liquid foam

There are two components in a liquid foam: the bubble film and PB.
A PB is made of three surfaces filled with a liquid medium. A light
ray can either be reflected or refracted at the film surface. When a
light ray enters the liquid, the average distance between collisions
of light and particles is determined by the medium’s mean free path
(mfp) l. The light can be scattered or absorbed, depending on the
absorption and scattering coefficients of the medium. A phase func-
tion expresses the scattered direction of a light ray. A light ray may
bounce numerous times within a PB before it eventually exits (see
Fig. 3).

4. Bidirectional Plateau-border scattering distribution
function

By treating Plateau borders as geometrical shapes and applying
a specular shading model to their surfaces while modeling the
interior as a liquid medium, we can render liquid foams using
Monte Carlo-based techniques, such as path tracing. As detailed
in Sec. 3.2, numerous scattering events occur within the Plateau
border’s medium. To avoid extensive scattering events, we pro-
pose a scattering distribution function specifically for the Plateau
border, which aggregates the scatterings within the Plateau bor-
der. This function is termed bidirectional Plateau-border scatter-
ing distribution function (BPSDF), analogous to the bidirectional
curve scattering function [MJC*03] defined for hairs. We first
parametrize BPSDF in Sec. 4.1 and then introduce its full formula-
tion in Sec. 4.2.

4.1. BPSDF parameterization

We start by constructing a coordinate frame for a PB, and then in-
troduce its parameters. Following the symbols defined in Sec. 3.1,
by setting γ1 ≥ γ2 ≥ γ3, we define the PB center as the origin, d1 as
the x axis, the cross product of d1 and d2 as z axis and product of
z axis and x axis as y axis, as illustrated in Fig. 4. Note that we as-
sume the PB is straight; if not, we discretize it into several straight
segments.

The parameters of a PB consist of the medium properties M, the
Plateau border shape parameters P, and the ray query (incoming
and outgoing positions and directions) parameters:

M = {η, l,αs,g}, (1)

P = {γ1,γ2,γ3,rP}, (2)

Q = {xi,ωi,xo,ωo}, (3)

© 2025 The Author(s).
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Figure 4: Left: parameterization for positions on the cross-section.
The arc length parameter starts from the tangent point at the x axis
and increases counterclockwise to describe the distance along the
boundary of the PB’s cross-section. Right: the coordinate frame
defined for a PB. Our method assumes no position offset along the
PB axis (orange) between the incoming point xi and outgoing point
xo, because the length of PB along the PB axis is much larger than
its width.

where η is the index of refraction (IOR), l and αs are the mean free
path and albedo of the medium, respectively, and g is the asym-
metry parameter of the Henyey-Greenstein phase function [HG40].
The ray query Q defined under the PB coordinate frame includes
the incoming position xi, incoming direction ωi, the outgoing posi-
tion xo and outgoing direction ωo.

Now, the scattering function can be formulated as a ten-
dimensional function, conditioned on the PB shape and medium
parameters:

S(xi,ωi,xo,ωo;M,P). (4)

As a high-dimensional material function leads to difficulties in rep-
resentation, we need to reduce the parameter dimensionality. For
this, we have two observations. First, the width of the PB is very
small compared to the length of the PB, allowing us to discard the
position offset along the PB axis. The same assumption has been
utilized in previous hair and fur models [MJC*03; YTJR15]. As a
result, both the incoming and outgoing positions can be located at
the same PB cross-section. Our second observation is that the PB
cross-section is a curve established by PB shape parameters. There-
fore, the incoming and outgoing positions can be defined with one
dimension under the normalized arc-length parameterization and
denoted as ci,co ∈ [0,1), as illustrated in Fig. 4.

Regarding directions ωi (ωo), we transform them into the local
space defined by the normal at xi (xo) and use the parameterization
(h,φ) ∈ [0,1]× [0,2π) in the hemisphere in this local space, where
h corresponds to the cosine of the elevation angle and φ represents
the azimuthal angle. Under this updated parameterization, the scat-
tering function has been simplified from ten to six dimensions:

S = S(ci,hi,φi,co,ho,φo;M,P). (5)

4.2. BPSDF formulation

The scattering function aggregates the scatterings within a Plateau
border. Mathematically, it integrates the contribution of all possible
light paths that enter the PB at position xi with direction ωi and exit

at position xo with direction ωo:

S(ci,hi,φi,co,ho,φo;M,P) =
∫

Ω

f (x̄)dµ(x̄), (6)

where x̄ represents a light path with vertices x0, x1, . . . , xk and
x0 = xi, xk = xo. Ω is the path space of entering and exiting the PB
from xi with ωi to xo with ωo. f is the contribution of a path x̄ ∈ Ω.

Among all these possible paths, we identify two types of light
paths: one involves only surface reflection or refraction by the PB,
and the other involves paths scattered at least once within the PB’s
medium. This classification is due to the fact that they have dis-
tinguished characteristics. Since the surfaces of the PB are liquid
films, the first type of paths are all specular, and their distributions
are discrete delta functions. The second type of path, influenced by
scattering within the medium, has a distribution that takes the form
of lobes. Since delta functions are impossible to store or compress,
we separate these two types of paths with a specular term Sspecular
and a scattered term Sscattered:

S(ci,hi,φi,co,ho,φo;M,P) = Sspecular +Sscattered. (7)

Specular term. The reflection and refraction interacting at the PB
surface result in various types of specular light paths (Fig. 3), de-
noted by R, T T , T RT , . . . , where R stands for reflection and T
stands for transmission:

Sspecular = AR +AT T +AT RT +AT RRT + . . . . (8)

Here, At indicates the attenuation along a specular path of type t ∈
{R, T T, T RT, T RRT, . . .}, defined as:

At = δ(xn,xo,ωo)×

(1−F(x0))(1−F(xn))(Π
n−1
j=1 F(x j))e

−σt Σ
n−1
j=0 |x jx j+1|, (9)

where F(x j) is the Fresnel term at x j, σt = 1/l is the extinction
coefficient of medium, and |x jx j+1| is the distance between x j
and x j+1. The term δ(xn,xo,ωo) is the delta function that deter-
mines whether xo and ωo correspond to xn as the outgoing vertex
of a specular path. In practice, we limit the maximum number of
bounces to five without noticing any visual difference.

Scattered term. As for the scattered term fscattered, it lacks an an-
alytical solution. Therefore, we design a set of neural networks to
represent and importance sample Sscattered. The design of these net-
works is presented in Sec. 5.

5. Neural BPSDF

For the scattered term in the BPSDF, there are two key functions:
evaluation and importance sampling. The former means comput-
ing the scattered term given incoming and outgoing positions and
directions. The latter means, given an incoming position and direc-
tion, sample the outgoing position and direction with a probability,
which is required by Monte Carlo rendering.

5.1. BPSDF evaluation

We treat the BPSDF evaluation as a regression problem, mapping
the input parameters to an output value. To ensure that the neu-
ral representation remains efficient and that inference time is mini-
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Figure 5: Our Eval-Net consists of an encoder and a decoder,
where the former encodes medium and shape parameters into a
latent vector, and the latter interprets the latent vector and a ray
query into a BPSDF value. The decoder contains two two-layer
residual blocks. Frequency encoding (FE) and spherical harmon-
ics (SH) encoding are employed.

mized, we employ two key strategies: reducing the number of input
parameters and designing an effective network structure.

For the input parameters, we find that the mfp l and the radius
rP of PB are relative. A PB with a radius rP containing a medium
with a mfp l can be regarded as a PB with a radius 1, where the mfp
of the internal medium is l/rP. Therefore, we introduce a relative
mean free path defined as l′ = l/rP, which reduces the number of
parameters by one. Our evaluation network, which is named Eval-
Net, takes the following twelve parameters as inputs:

Sscattered = Neval(η, l
′,αs,g,γ1,γ2,ci,hi,φi,co,ho,φo). (10)

Designing a small MLP to directly map twelve parameters to a
BPSDF value is a straightforward way. Unfortunately, the recon-
structed distribution tends to be inaccurate. To address this issue,
we design a neural network with an encoder and a decoder (see
Fig. 5). The encoder first extracts the features of the medium pa-
rameters as a latent vector by a small MLP. Then, this latent vector
is concatenated with the position-encoded shape parameters and
fed into a larger MLP to get a feature which represents the liquid
and PB shape. Then, the decoder interprets the latent vector along
with encoded ray queries into a BPSDF value, where frequency
encoding is applied to positions and spherical harmonic (SH) en-
coding is applied to directions. To improve the network’s ability to
model sharp distributions, we apply a ex − 1 decoding on the net-
work’s output to get the predicted value of Eval-Net. The detailed
encodings of inputs are shown in Tab. 2 of the supplementary ma-
terial. The learned distribution can match the ground truth closely,
as shown in Fig. 9 and the supplementary material.

Note that our evaluation network takes single-channel inputs for
medium parameters. For RGB-represented l, αs and g, we indepen-
dently compute three channels during inference.

5.2. BPSDF importance sampling

To enable BPSDF in Monte Carlo rendering, it’s necessary to sup-
port importance sampling, indicating that the outgoing position and
direction should be sampled, given an incoming position and direc-
tion. While the outgoing position and direction are correlated, it’s
challenging to sample them simultaneously. Therefore, we propose

Shape

Ray 0.00 0.25 0.50 0.75 1.00

5.0

2.5

0.0

Value

ih iϕ

ic
oc

1γ 2γ
Medium

l' sα gη

Figure 6: Our Pos-Net has a similar structure as Eval-Net, except
the decoder interprets the latent vector, along with the incoming
ray parameters, into an outgoing position distribution represented
as three Laplace distributions with nine parameters.

using two separate networks: the first network, denoted as Pos-Net,
samples the position, and the second network, denoted as Dir-Net,
samples the direction, conditioned on the previously sampled posi-
tion.

Sampling outgoing position. The outgoing position co follows a
one-dimensional distribution on the PB cross-section. This distribu-
tion exhibits a three-lobe shape, which corresponds to the rays that
exit from the three faces of the PB (see Fig. 9). Therefore, our key
idea is to fit the distribution with three one-dimensional basis func-
tions with a small network, sample one of the basis functions with
cumulative distribution function (CDF) sampling, and then sample
these functions to obtain an outgoing position.

Specifically, based on the sharp characteristics of outgoing po-
sition distributions, we use three Laplace distributions [Ken72] as
the basis functions:

l j(x) =
1

2λ j
e
− |x−µ j|

λ j , j = 1,2,3. (11)

Its CDFs are defined as:

C j(x) =

 1
2 e

− µ j−x
λ j , if x < µ j

1− 1
2 e

− x−µ j
λ j , if x ≥ µ j.

(12)

We use the mixture of three Laplace distributions with weights a j
to fit the distribution of co:

PDFpos(co) =
Σ

3
j=1a jl j(co)

Σ3
j=1a j

∫ 1
0 l j(x)dx

. (13)

To optimize the value of weights and Laplace distribution parame-
ters, we use a neural network Pos-Net (Fig. 6) to model the map-
ping:

Npos : (η, l′,αs,g,γ1,γ2,ci,hi,φi)

→ (µ1,µ2,µ3,λ1,λ2,λ3,a1,a2,a3). (14)

Pos-Net has an encoder with the same structure as Eval-Net, and
a decoder which maps the extracted feature and (ci,hi,φi) to nine
outputs. These outputs are further decoded to obtain parameters of
three Laplace distributions. The decoding schemes are shown in
Tab. 3 of the supplementary material.
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Figure 7: Our Dir-Net has a similar structure as Pos-Net, except
the decoder produces the outgoing direction distribution, repre-
sented as a 16× 32 histogram for (ho,φo) conditioned on the out-
going position co.

Sampling outgoing direction. With the sampled position co, the
next step is to sample an outgoing direction ωo at co. As summa-
rized in NeuSample [XWH*23], there are three methods for im-
portance sampling with a neural network: 1) learning a spherical
basis function (e.g., SH, or spherical Gaussian) as a proxy and
performing analytical sample with the learned proxy; 2) learning
the exact PDF directly using normalizing flow or even a diffu-
sion model [FBL*24]; 3) learning a coarse 2D histogram, and per-
forming CDF sampling on the learned histogram. In the context of
BPSDF importance sampling, the first solution is not effective, as
the BPSDF has a distribution that differs significantly from regu-
lar BRDFs, lacking symmetry and regularity. The second method,
while capable of producing the most accurate distribution, is time-
consuming and can slow down the entire rendering. For these rea-
sons, we opt for the third option, predicting a histogram from a
directional sampling network Dir-Net.

Dir-Net takes (η, l′,αs,g,γ1,γ2,ci,co,hi,φi) as inputs and out-
puts a histogram with resolution set as 16 × 32 for (ho,φo) ∈
[0,1]× [0,2π). As a result, the PDF of (ho,φo) is modeled as a
piecewise-constant function. The network architecture has a simi-
lar encoder as Eval-Net, and then outputs the histogram conditioned
on ci, co, hi and φi, as shown in Fig. 7. We also perform the ex −1
decoding for outputs of Dir-Net. A comparison between the basis
function and the histogram representations is shown in Fig. 17.

6. Liquid foam modeling and Monte Carlo rendering

Before using our proposed BPSDF for liquid foam rendering, it
is necessary to model a liquid foam with Plateau borders. To our
knowledge, no existing approaches can achieve this. Therefore, we
propose a practical solution for modeling the liquid foam and then
we render it using our BPSDF within a Monte Carlo rendering
framework.

6.1. Liquid foam modeling

Existing research [BDWR12] has modeled the structure of bubble
collections by simulating bubble flows [QLY*23; BDWR12] using
the power diagram, which is also known as the weighted Voronoi
diagram [Aur87]. In their approach, each bubble is represented as
a sphere, denoted as B = B(c,r), where c is the center and r is

(a) (b)

circular
straight

Figure 8: (a) A 2D illustration of the power diagram for bubbles.
(b) Examples of several bubbles with PBs generated by a power
diagram.

Pos-Net
GT

GT Dir-Net

(a) Eval-Net

(b) Pos-Net (c) Dir-Net

Poisition distribution Direction distribution

GT Eval-Net 0.0

2.5

5.0

Eval-Net
GT

Figure 9: The validation of our Eval-Net (top), Pos-Net (bottom
left), and Dir-Net (bottom right), by plotting the BPSDF value as
a function of varying positions or directions at a fixed position.
All the models can approximately match the GTs. The experiments
were conducted under the following settings: (η = 1.33, l′ = 0.02,
αs = 1, g = 0.9, γ1 = 2.10, γ2 = 2.10, ci = 0.23, hi = 0.9, φi =
3.14).

the radius of the bubble. A set of bubbles {Bi(ci,ri)} is gener-
ated, with ci and ri serving as the center and weight for the cor-
responding weighted Voronoi cell. The geometry of each bubble is
characterized by the intersection of the sphere Bi and its associated
Voronoi cell, resulting in a polyhedral shape. The film that forms
between two intersecting bubbles is approximated as being planar
(see Fig. 8). We follow the same way as prior work, except that
we place PBs at the boundaries of the intersection faces where two
weighted Voronoi cells meet.

6.2. Monte Carlo rendering of liquid foam

After modeling the geometry of the liquid foam, we treat them
as primitives for Monte Carlo rendering. We take path tracing as
an example, and integrate our BPSDF into the rendering pipeline.
Starting from shooting rays from the camera, if a ray intersects with
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a PB with parameters (η, l′,αs,g,γ1,γ2,ci,hi,φi), we perform the
following steps:

• Choose Sspecular or Sscattered. Sample a specular path with its
path contribution as the probability. If none of the specular
paths is chosen, the scattered term Sscattered is sampled, and pre-
ceded to the next step.

• Sample co with Pos-Net and compute its PDF: PDFpos(co).
• Sample ωo with Dir-Net and compute its PDF: PDFdir(ho,φo).
• Finally, we evaluate the scattered term of BPSDF with Eval-Net

to get Sscattered and compute Sscattered
PDFpos(co)PDFdir(ho,φo)

as the sample
weights.

The light ray continues bouncing with the new position and direc-
tion.

7. Data preparation and training details

In this section, we provide the details of our data generation process
and the training setups for our neural networks. More details about
the geometric modeling and network architectures can be found in
the supplementary.

7.1. Data preparation.

The sampling functions for medium, shape, and ray parameters are
detailed in Tab. 2 in the supplementary.

For Eval-Net, we use VPT within a single PB with rP = 1 to gen-
erate the dataset. We sample 800 million sets of medium, shapes,
and rays. For each sampled parameter set, we compute its BPSDF
scattered term in Eqn. (7) with 4096 samples, using 9 hours on an
AMD Ryzen 9 5950X CPU with 16 cores and 32 threads.

For Pos-Net, we use the trained Eval-Net to generate the datasets.
We sample 2.5 million sets of medium, shape, and incoming ray
parameters. For each sampled parameter set, we discretize the out-
going parameters into a 64× 16× 32 table and sum over the two-
dimensional outgoing direction to get distributions for outgoing po-
sitions, using 4 hours on an NVIDIA 4090 GPU.

For Dir-Net, we sample 5 million sets of medium, shape, incom-
ing ray, and outgoing position parameters. We use a 16× 32 table
to store the outgoing direction distribution for each sampled param-
eter set, and infer the trained Eval-Net to generate the dataset for
Dir-Net, which takes 4 hours on an NVIDIA 4090 GPU.

7.2. Training Details.

We implement our networks in PyTorch and train them on a single
NVIDIA 4090 GPU. The Adam optimizer is used with a learn-
ing rate of 0.001. For Eval-Net, we use the L1 loss and train the
network for 30 epochs. The learning rate decay is controlled us-
ing CosineAnnealingLR, reaching a minimum value of 1× 10−4

by the end of training. For Pos-Net, we use the Kullback-Leibler
Divergence (KL Divergence) as the loss function and train the net-
work for 1000 epochs. For Dir-Net, we use L1 + 5L2 loss and also
train for 1000 epochs. The learning rates of Pos-Net and Dir-Net
decay by 0.5 at the 500th epoch. Training three networks takes 24
hours in total.

w/o PBsGT (meshed PBs) Ours (w/ PBs)Real photo

Figure 10: Visual realism caused by modeling PBs in liquid foam.
Given a real photo, we create a liquid foam model that matches
the real photo as closely as possible and then render it in three
ways: with PBs modeled by meshes (GT), with PBs using our model
(ours), and without PB modeling, where the latter appears less re-
alistic.

8. Results

We have implemented our BPSDF in unidirectional path tracing in-
side PBRT-v4 [PJH16], using the WavefrontIntegrator on the GPU.
We infer the networks with TensorRT at kFP8 precision. All tim-
ings given in this section are measured on a single NVIDIA 3090
GPU. All the reference/ ground truth (GT) images are rendered by
volumetric path tracing (VPT) with 2048 samples per pixel (SPP).
We compare our method against VPT to demonstrate the effective-
ness of our model. We did not compare with other advanced light
transport methods, since our model is orthogonal to those tech-
niques. The resolutions of images are set as 1024 × 1024. We use
the Peak Signal to Noise Ratio (PSNR) to measure the image qual-
ity. For fairness in comparison, we only calculate the PSNR of the
foam region in the rendered images by using a mask.

8.1. Quality validation

Comparisons with real captured photo. To validate the impact
of the Plateau border, we compare the rendered results with and
without the modeling of PBs against a real photo in Fig. 10. Addi-
tionally, to evaluate the effect of using our PB model, we compare
two approaches: meshed modeling and our modeling. We manually
use triangle meshes to model PBs to match the real photo as closely
as possible, which we take as the GT, while our model employs an
approximate PB shape. The comparisons show that incorporating
PBs significantly enhances realism, with meshed PBs producing
smoother transitions and more natural appearances. Compared to
meshed PBs, our modeling incurs only a slight loss in realism while
being much easier to apply to large-scale foam. Note that generat-
ing a liquid foam to match the real photo is challenging. Therefore,
there are still some differences between the real photo and our ren-
dering due to the modeling reasons. Aside from PB modeling, we
observe that the films in the photo contain more liquid, while the
thin film material we use appears more transparent. While model-
ing the thin films would affect realism, we consider it parallel to
our work, as our primary focus is on PB rendering.

Comparisons with Kück et al. [KVG02]. We compare our method
against Kück et al. [KVG02], which models the effect of PBs at
the shading level with an empirical shading model instead of at
the geometric level. As shown in Fig. 11, our model can easily pro-
duce different renderings for a liquid foam containing various types
of media by simply adjusting the medium parameters. In contrast,
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Kück et al. [2002] 0.04l =Ours with Ours with 0.02l =

Figure 11: Comparison between Kück et al. [KVG02] and our
model. Kück et al.’s method models PBs at the shading level, which
lacks the physical parameters to produce different appearances and
the PB area is presented on the bubble shell. Our model can render
different foams by simply adjusting the medium parameters.

Kück et al.’s method lacks the physical parameters to reproduce
these different appearances. Additionally, since their approach does
not incorporate PB geometries, the PB area is only represented on
the bubble shell, resulting in an unrealistic visual appearance.

Comparisons with volume rendering. To validate the effective-
ness of our method, we compare our method against VPT under
equal time on two scenes with different media (milk on the top and
coffee at the bottom) in Fig. 12, where the coffee has higher absorp-
tion than the milk. In both scenes, our method outperforms VPT,
showing much less noise visually and qualitatively. The main rea-
son is that the aggregation of scattering modeled by BPSDF short-
ens the path length and reduces the time cost per sample, leading to
more samples under equal-time rendering. By comparing the ren-
derings of two media, our method shows less improvement in the
Coffee scene, as the light paths within a medium with higher ab-
sorption tend to be shorter. (The average length of light paths is
458 for the Milk scene, and 82 for the Coffee scene.)

We compare our method with VPT across various medium pa-
rameters in Fig. 13. We provide renderings of both methods ren-
dered at 2048 SPP, showing that the converged results of our
method can match the GTs visually. As expected, for a medium
with a shorter mfp and higher albedo, our method shows more im-
provement, as such media have longer paths. Furthermore, while
the mfp and albedo remain the same, our method demonstrates
more improvement on medium with a smaller g.

In Fig. 13, we also present the convergence curve for both our
method and VPT, by showing the PSNR as a function of render-
ing time, where the PSNR is computed against the converged ren-
derings (2048 SPP) of VPT. Our method converges rapidly due to
lower rendering costs. Note that the PSNR between our method and
GT is affected by bias that stems from the network approximation
and several assumptions. To investigate the noise level in our ren-
derings further, we also show the PSNR curve between our method
and the converged rendering (2048 SPP) of our method, showing
that the noise level of our renderings remains lower consistently
before and after converging.

White furnace test. In Fig. 14, we perform a white furnace test on
a single Plateau border filled with a non-absorptive medium by us-
ing a constant environment map with radiance set to 1. As expected,

the specular term leads to dark pixel values. We obtain a constant
image by incorporating volume rendering, indicating passing the
white furnace test. Our neural BPSDF scattered term together with
the specular term produces a nearly constant image, with only slight
inaccuracy due to the fitting error of the network.

8.2. Ablation studies

Ablation study for network architecture. The encoder is an im-
portant design in all of our networks, and we validate its impact by
taking the evaluation network as an example. As shown in Fig. 15,
we compare both the rendered results and the radiance distribution
with and without the encoder. For fairness, we ensure that the num-
ber of parameters in the network (w/o encoder) is the same as in
our network. By comparison, we find that the encoder improves the
quality of fitting and rendering results.

Ablation study for importance sampling. We validate the effec-
tiveness of two importance sampling networks (Pos-Net and Dir-
Net) in Fig. 16 by comparing the results rendered without impor-
tance sampling (IS), with Pos-Net only, with Dir-Net only, and with
both. While either Pos-Net or Dir-Net reduces the noise, employing
both networks leads to the least noise.

Ablation study for Dir-Net. There are several ways to design the
Dir-Net, either by predicting the mixture of basis functions or using
histograms (our choice). We validate the effectiveness of our choice
by comparing it to an alternative method that utilizes eight Spher-
ical Gaussians (SGs) as basis functions. We implement the same
network structure as in Fig. 7, with the only difference being that
the output 16×32 histogram is replaced with eight SGs. As shown
in Fig. 17, we compare rendering and the radiance distribution. Our
solution exhibits much less noise than the SG-based solution. Our
histogram-based solution has a much closer match to the GT distri-
bution, as the distribution of a BPSDF is asymmetric, which makes
it hard for basis functions to fit.

8.3. Limitations and discussion

BPSDF properties. Theoretically, the formulation derived for the
BPSDF in Eqn. (4) can ensure both reciprocity and unbiasedness.
However, in practice, we make several assumptions which intro-
duces bias. Simultaneously, the neural representation of BPSDF
tends to forfeit both reciprocity and unbiasedness, similar to most
existing neural materials [FWH*22; ZRW*24]. Despite this limita-
tion, our renderings do not show any noticeable artifacts.

Application of the BPSDF. In this paper, we incorporate our
BPSDF into unidirectional path tracing to demonstrate its effec-
tiveness. However, it can also be easily applied to other advanced
Monte Carlo rendering techniques, such as volume path guid-
ing [HZE*19]. By leveraging their sampling strategies, we can
achieve significantly less noisy renderings.

Difference from BCSDF. Our BPSDF, which is connected to PB,
differs from the BCSDF used in previous hair and fur models in
several aspects. In terms of assumptions, our BPSDF discards the
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Figure 12: Comparisons between our method and VPT on two different scenes. For mediums with small l and large αs, our method signifi-
cantly reduces rendering time overhead, while VPT suffers from multiple scattering in PBs.

offset along the PB axis, while the BCSDF assumes that the outgo-
ing position remains unchanged. For formulation and computation,
our BPSDF involves more parameters and aggregates the scattered
paths in a distribution represented by networks, while BCSDF di-
vides scattered paths into several types and utilizes precomputed
tables. In Fig. 18, we compare the bias introduced by the assump-
tions of our BPSDF and the BCSDF. We apply assumptions to VPT
to ignore either the longitudinal offset or the outgoing position dis-
placement of light propagation within the PB. We find that assum-
ing a fixed outgoing position introduces significant error, while ne-
glecting longitudinal offset results in minimal bias. This suggests
that the rendering result is more sensitive to the outgoing position
on the PB cross-section, and validates the reasonableness of our
assumptions.

Difference from BSSRDF. The BPSDF with full parameters
shares the same parameterization as the BSSRDF, including both
the incident and exit positions and directions. However, in the con-
text of the PB, it has a distinctive geometry, which leads to a differ-
ent ray parameterization and a specialized scattering distribution.
Specifically, our simplified BPSDF parameterizes both incident and
exit positions on the PB cross-section, resulting in characteristic
positional and directional distributions. Compared to existing neu-
ral BSSRDF approaches such as Neural SSS [TTJ*24], our ap-
proach uses specialized network designs to handle the distributions
of BPSDF. For example, we adopt three Laplace distributions to
sample the outgoing position and a histogram-based method for the
asymmetric directional distribution. In contrast, Neural SSS uses a
3D Gaussian to fit simpler distributions for importance sampling.

Generalization to complex PB shapes. We model the PB geome-
try by making several practical assumptions, such as maintaining a

constant radius along the Plateau axis and ignoring the PB’s junc-
tions. Our model also lacks a simulation of how different liquids
affect the size of the PB. More accurate PB geometries, such as
a bone-like shape, can be employed, as illustrated in Fig. 1 of the
supplementary material. Our approach can be generalized to such
PB shapes by modifying the networks. For example, additional pa-
rameters for PB shape and longitudinal positions need to be in-
corporated, which is feasible but increases the complexity of both
networks and importance sampling. We leave it for future work.

9. Conclusion

In this paper, we have presented a novel way for liquid foam render-
ing, which can produce realistic renderings efficiently. The key idea
is to explicitly model the Plateau border into liquid foam and aggre-
gate the scatterings within a PB using a newly proposed scattering
function known as BPSDF. We have developed a comprehensive
set of neural functions for representing the BPSDF and for impor-
tance sampling to facilitate practical applications. As a result, our
method allows for the realistic rendering of liquid foam, while the
BPSDF demonstrates a significant reduction in noise compared to
direct volumetric rendering.

We believe that the modeling of the PB is novel to graphics and
has the potential to open up new possibilities in related areas. In
the future, it will be interesting to introduce PB into foam simu-
lation. Furthermore, aggregating the scatterings in a collection of
PBs rather than in an individual PB can further reduce noise levels.
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represent the converged results (2048 SPP) of VPT and ours. Our method leads to a fast convergence but introduces bias compared to VPT
as illustrated by the convergence curves. η is set to 1.33. The error images are scaled by a factor of 3.

Ours Specular term+
volume rendering

Specular term+
neural scattered term

Specular termGT

0.
02

l
=

0.
1

l
=
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values. Including the scattered term of the BPSDF using volume
rendering produces a constant image. Including the neural scat-
tered term for the BPSDF closely approximates a constant image,
with some minor inaccuracies due to network bias.
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