

Chinagraph 2024

渲染与逆渲染年度进展报告

南京大学 智能科学与技术学院

2024.10.12

Rendering and Inverse Rendering

Rendering and Inverse Rendering

What's new in rendering?

What's new in rendering?

Rendering - Appearance modeling

Practical models for **diffraction of**

[Xia et al. 2023, Steinberg et al. 2024]

rough fibers and free-space

Micrograin BSDF model for anisotropic porous layers [Lucas et al. 2023, 2024]

Unifying lighting transport from **surface to volume** via Gaussian process implicit surfaces [Seyb et al. 2024]

diffractions

Neural **representation** for complex materials [Fan et al. 2023, Zeltner et al. 2024]

Neural material editing and synthesis [Xu et al. 2024, Tu et al. 2024]

Neural BSDF sampling with diffusion models [Fu et al. 2024]

What's new in rendering?

new tools from AI?

Rendering - Light transport

Specular polynomials, a Newton iteration-free methodology [Fan et al. 2024]

Per-object learn neural light transfer function. [Zheng et al. 2023]

Classical

Neural-aided

ReSTIR for **defocusing & antialiasing** / ReSTIR with **MCMC**. [Sawhney et al., Zhang et al. 2024]

Efficient **neural path guiding** with **4D modeling.** [Dong et al. 2024]

Neural representation of light sources for dynamic rendering. [Ren et al. 2024]

New geometry respresentation (3D Gaussian), new AI tools (diffusion models)

New geometry respresentation (3D Gaussian), new AI tools (diffusion models)

Material Reconstruction

How to reduce ambiguity?

Material Reconstruction

"light brown stone pavement"

Diverse conditions by **diffusion models** [Sartor et al. 2023] [Vecchio et al. 2024]

Material Generation

Implicit texture prior:

A deep convolutional-PBR neural representation for SDS optimization **Paint it** [Youwang et al. 2024]

"a highly detailed stone bust of Theodoros Kolokotronis" [Chen et al. 2023] \downarrow $k_{\underline{d}}$ $k_{\underline{rm}}$ $k_{\underline{n}}$ PBR material \leftarrow update

Geometry and light-aware generation: Reduce the light **baked-in** issue **DreamMat** [Zhang et al. 2024b]

Segment-aware generation:

Albedo map generation, and **material graph** for other maps. **Mapa** [Zhang et al. 2024a]

Given a 3D mesh, generate PBR materials with pre-trained diffusion models via SDS or its variants.

Texture-conditioned generation:

Generate PBR maps from given sparse images with personalized geometry-aware score distillation

TextureDreamer [Yeh et al. 2024]

New geometry respresentation (3D Gaussian), new AI tools (diffusion models)

Geometry	Reflectance Field – Material & Light DecoupleMaterialLight		Render	
Density Field	Analytical Model	Image	Neural Light	Volume Rendering
•Flexible	•Fewer parameters	•Direct Illumination	•Direct & Indirect	•Expensive to eval
•Non-surface objects	•Limited capability	•High flexibility	•High flexibility+	•Easy to fit modern
•Under-constrained				graphics pipeline
SDF •Surface only •With constraints	Neural Model •Wide-range materials •Ambiguity & overfitting	Spherical Gaussians •Direct Illumination •Fewer parameters •Loss high-frequency details		$(x,y;z,\theta,\phi)$
3D Gaussian•Detail-preserved•Discontinuity	Radiance Field – Material & Light Entangle •Learn a color to replace material & light •Easy to optimize •Cannot achieve relighting			Rasterization •Fast/Real-time •Difficult to fit modern graphics pipeline

Volume Rendering NeRF-based TensolR [Jin et al, 2023] **Density Field Fast & high-quality occlusion** SGs for Lambertian objects. **NeRO** [Liu et al. 2023] **Neural Light** Integrate rendering equation to SDF enable **reflective surfaces**. **Radiance Field** TensoSDF [Li et al. 2024] SDF Fast training, detailed geom. **Density Field** and robust materials. Neural Light

NRHints [Zeng et al. 2023] Use **point light** to decouple materials and lights. **GS-based** 3D Gaussian

Rasterization

GS-IR, GaussianShader Env. Map Radiance Field [Jiang et al., Gao et al., Liang et al. 2024] **Geometry constraints via normal/depth regularization.**

GS-ROR [Zhu et al. 2024] Env. Map **Regularize** Gaussians with **SDF priors** for **reflective object** relighting.

GS³ [Bi et al. 2024]

SDF

Neural Light

Point Light

RNG [Fan et al. 2024]

Point Light

Radiance Field

Relightable 3D Gaussians under **point lights, enabling both surface and furry objects.**

New geometry respresentation (3D Gaussian), new AI tools (diffusion models)

Differentiable Rendering

Geometry representation: From **mesh** to **implicit geometries**. [Zhou et al. 2024] **Differentiating subject:** From **radiance** to **variance**. [Yan et al. 2024]

(a) Ordinary

(b) Derivative

[Zhang et al. 2020]

Boundary integral estimator: From **path integral sampling** to **MCMC.** [Xu et al. 2024] Acceleration of sampling: Path guiding to differentiable rendering. [Fan et al. 2024]

> Rendering

- Appearance modeling: physically-based models vs. neural-based models
- Light transport: classical / neural aided / pure neural

> Inverse Rendering

- > Speed and quality of NeRF vs. 3D Gaussians
- A big gap between the forward and inverse rendering in terms of shading models / appearance quality

感谢大家的聆听!

欢迎大家关注和支持EGSR 2025,相聚在丹麦!

Beibei.wang@nju.edu.cn

https://wangningbei.github.io/

The slides will be available soon.

- [Xia et al. 2023] A Practical Wave Optics Reflection Model for Hair and Fur
- [Steinberg et al. 2024] A Free-Space Diffraction BSDF
- [Lucas et al. 2024] A Fully-correlated Anisotropic Micrograin BSDF Model
- [Seyb et al. 2024] From microfacets to participating media: A unified theory of light
- transport with stochastic geometry
- [Fan et al. 2023] Neural Biplane Representation for BTF Rendering and Acquisition
- [Zeltner et al. 2024] Real-Time Neural Appearance Models
- [Xu et al. 2024] A Dynamic By-example BTF Synthesis Scheme
- [Tu et al. 2024] Compositional Neural Textures
- [Fu et al. 2024] BSDF Importance Sampling using a Diffusion Model

- [Fan et al. 2024] Specular Polynomials
- [Sawhney et al. 2024] Decorrelating ReSTIR Samplers via MCMC Mutations
- [Zhang et al. 2024] Area ReSTIR: Resampling for Real-Time Defocus and Antialiasing
- [Dong et al. 2023] Neural Parametric Mixtures for Path Guiding
- [Huang et al. 2024] Online Neural Path Guiding with Normalized Anisotropic
- **SphericalGaussians**
- [Dong et al. 2024] Efficient Neural Path Guiding with 4D Modeling
- [Zhen et al. 2024] NeLT: Object-Oriented Neural Light Transfer
- [Ren et al. 2024] LightFormer: Light-Oriented Global Neural Rendering in Dynamic
- Scene

References – Material Reconstruction

- [Wang et al. 2024] NFPLight: Deep SVBRDF Estimation via the Combination of
- **Near and Far Field Point lighting**
- [Luo et al. 2024] Correlation-aware Encoder-Decoder with Adapters for SVBRDF
- Acquisition
- [Sartor et al. 2023] MatFusion: a Generative Diffusion Model for SVBRDF Capture [Vecchio et al. 2024] ControlMat: A Controlled Generative Approach to Material Capture
- [Tang et al. 2024] Woven Fabric Capture with a Reflection-Transmission Photo Pair

- [Chen et al. 2023] Fantasia3D: Disentangling Geometry and Appearance for Highquality Text-to-3D Content Creation
- [Yeh et al. 2024] TextureDreamer: Image-guided Texture Synthesis through
- **Geometry-aware Diffusion**
- [Zhang et al. 2024a] MaPa: Text-driven Photorealistic Material Painting for 3D Shapes
- [Zhang et al. 2024b] DreamMat: High-quality PBR Material Generation with
- **Geometry- and Light-aware Diffusion Models**
- [Youwang et al. 2024] Paint-it: Text-to-Texture Synthesis via Deep Convolutional
- **Texture Map Optimization and Physically-Based Rendering**

- [Liu et al. 2024] NeRO: Neural Geometry and BRDF Reconstruction of Reflective
- **Objects from Multiview Images**
- [Li et al. 2024] TensoSDF: Roughness-aware Tensorial Representation for Robust
- **Geometry and Material Reconstruction**
- [Jiang et al. 2024] GaussianShader: 3D Gaussian Splatting with Shading Functions
- for Reflective Surfaces
- [Liang et al. 2024] GS-IR: 3D Gaussian Splatting for Inverse Rendering
- [Gao et al. 2024] Relightable 3D Gaussian: Real-time Point Cloud Relighting with
- **BRDF Decomposition and Ray Tracing**

References – Differentiable Rendering

[Zhou et al. 2024] Path-Space Differentiable Rendering of Implicit Surfaces [Yan et al. 2024] Differentiating Variance for Variance-Aware Inverse Rendering [Xu et al. 2024] Markov-Chain Monte Carlo Sampling of Visibility Boundaries for Differentiable Rendering [Fan et al. 2024] Conditional Mixture Path Guiding for Differentiable Rendering [Zhang et al. 2020] Path-Space Differentiable Rendering

