
Real-time Neural Woven Fabric Rendering
Xiang Chen

School of Software, Shandong
University
China

xiang_chen@mail.sdu.edu.cn

Lu Wang∗
School of Software, Shandong

University
China

luwang_hcivr@sdu.edu.cn

Beibei Wang∗
School of Intelligence Science and
Technology, Nanjing University

China
beibei.wang@nju.edu.cn

Modified Jin et al. [2022] (2 SPP)
22.2 ms

GT
2841.6 ms

Ours
18.4 ms

MSE: 2.62e-3 MSE: 1.07e-2

Figure 1: We present a neural network for real-time woven fabric rendering. In this Sofa scene, we provide eight different
patterns of woven fabrics. Our method can represent several typical types of woven fabrics with a single neural network, which
achieves a fast speed and a quality close to the ground truth
.
ABSTRACT
Woven fabrics are widely used in applications of realistic rendering,
where real-time capability is also essential. However, rendering
realistic woven fabrics in real time is challenging due to their com-
plex structure and optical appearance, which cause aliasing and
noise without many samples. The core of this issue is a multi-scale
representation of the fabric shading model, which allows for a fast
range query. Some previous neural methods deal with the issue at
the cost of training on each material, which limits their practicality.
In this paper, we propose a lightweight neural network to represent
different types of woven fabrics at different scales. Thanks to the
regularity and repetitiveness of woven fabric patterns, our network

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0525-0/24/07. . . $15.00
https://doi.org/10.1145/3641519.3657496

can encode fabric patterns and parameters as a small latent vector,
which is later interpreted by a small decoder, enabling the represen-
tation of different types of fabrics. By applying the pixel’s footprint
as input, our network achieves multi-scale representation. More-
over, our network is fast and occupies little storage because of its
lightweight structure. As a result, our method achieves rendering
and editing woven fabrics at nearly 60 frames per second on an
RTX 3090, showing a quality close to the ground truth and being
free from visible aliasing and noise.

CCS CONCEPTS
• Computing methodologies → Rendering.

KEYWORDS
fabric rendering, neural rendering

ACM Reference Format:
Xiang Chen, Lu Wang, and Beibei Wang. 2024. Real-time Neural Woven
Fabric Rendering. In Special Interest Group on Computer Graphics and Inter-
active Techniques Conference Conference Papers ’24 (SIGGRAPH Conference
Papers ’24), July 27-August 1, 2024, Denver, CO, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3641519.3657496

https://doi.org/10.1145/3641519.3657496
https://doi.org/10.1145/3641519.3657496

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Chen et al.

1 INTRODUCTION
Realistic woven fabric rendering is vital to many applications in the
modern digital age, including virtual reality, video games, and digi-
tal humans. Besides the realism, these applications also require a
real-time rendering performance. However, simultaneously achiev-
ing realism and low time costs is still challenging, as fabrics have
complex microstructures and strong anisotropic appearances, lead-
ing to aliasing if under-sampled.

Existing approaches can produce high-fidelity rendering results
by modeling woven fabrics with volume representations [Heitz et al.
2015; Zhao et al. 2011] or modeling the scattering function of each
fiber [Aliaga et al. 2017; Khungurn et al. 2016]. Despite their high
realism, they can not be applied to real-time rendering. On the other
hand, it is more practical to model the woven fabrics with surface
shading models [Irawan and Marschner 2012; Jin et al. 2022; Zhu
et al. 2023a]. Nevertheless, these methods cannot be applied directly
to real-time applications since they need hundreds of samples to
avoid aliasing caused by detailed yarn structures. The key to this
issue is a multi-scale representation of the fabric surface shading
model, which can not be treated linearly as the mipmap of diffuse
maps [Williams 1983]. The other line of work resorts to neural
networks to create a multi-resolution representation for general
materials [Gauthier et al. 2022; Kuznetsov et al. 2021], which are
not specialized for fabrics. Despite their high performance, these
methods either need per-material training [Kuznetsov et al. 2021]
or have difficulties supporting fabric parameters [Gauthier et al.
2022].

In this paper, we propose to represent different types of woven
fabrics at different scales with a single neural network. At the core
of our method is a tiny neural network capable of representing
different types of fabrics while simultaneously allowing real-time
rendering and editing. The key to achieving these two goals is based
on an important observation: woven fabric patterns have regularity,
different from the general materials. More specifically, starting from
the state-of-the-art fabric surface shading model [Zhu et al. 2023a],
we design a lightweight neural network for the range query of
fabric bidirectional scattering distribution functions (BSDFs). Our
network first encodes the fabric patterns into features and then
fuses the pattern feature with other fabric parameters into a small
material latent vector. The material latent vector, together with
the queries (position, range, and directions), can be interpreted by
a decoder consisting of two multilayer perceptrons (MLPs) into
BSDF values. Eventually, the lightweight network structure enables
real-time rendering at a frame rate of almost 60 frames per second
on an RTX 3090, with a quality close to the ground truth for several
typical types of woven fabrics. The network only occupies 5 MB of
storage. Furthermore, our network also supports real-time material
editing by modifying the fabric patterns and parameters.

2 PREVIOUS WORK
In this section, we briefly review previous works related to fab-
ric surface shading models and prefiltering methods for appear-
ance models. As our method is less related to the models based on
yarn [Zhu et al. 2023b], ply [Montazeri et al. 2020] or fiber [Aliaga
et al. 2017; Khungurn et al. 2016] curves, we do not discuss these

works in this section. The volume-based models [Heitz et al. 2015;
Zhao et al. 2011] are also beyond our scope.

Fabric surface models. Fabric surface models [Adabala et al. 2003;
Irawan and Marschner 2012; Sadeghi et al. 2013] have been in-
troduced to fabric rendering for decades. The recent SpongeCake
surface shading model by Wang et al. [2022] can model the fabric
appearance by stacking different layers, where each layer is defined
by a microflake distribution [Heitz et al. 2015; Jakob et al. 2010]. On
top of the SpongeCake model, Jin et al. [2022] design extra compo-
nents specialized for fabrics, including a blended Lambertian term
and two types of noise. Later, their method is improved by Zhu
et al. [2023a] to deal with transmission and shadowing-masking
effects.

While the above surface shading models can render fabrics effi-
ciently, they are unsuitable for real-time rendering due to the lack
of a multi-scale representation. Thus, we propose a neural multi-
scale representation that considers range queries and suits real-time
rendering. Our method can exploit most of the above models in
theory, and we use the modification of Jin et al. [2022] (including
transmission and shadowing-masking effects) as an example.

Complex appearance prefiltering. Due to the limited time bud-
get, prefiltering or downsampling complex appearance models is a
practical solution for real-time rendering applications. It has been
used for filtering normal maps [Dupuy et al. 2013; Olano and Baker
2010], filtering the normal distribution function in the slope do-
main [Kaplanyan et al. 2016], or joint prefiltering [Xu et al. 2017]
the normal map together with bidirectional reflectance distribution
function (BRDF). While these approaches produce reasonable re-
sults for surface-like distributions, they are unsuitable for fiber-like
distributions. Unlike the above methods, Wu et al. [2019] introduce
a more accurate way to filter displacement maps and BRDFs, using
a scaling function for both surface location and direction, at the
cost of expensive rendering time. Prefiltering has also been applied
to microflake volumes [Heitz et al. 2015; Loubet and Neyret 2017;
Zhao et al. 2016]. One related work by Heitz et al. [2015] performs
mipmapping on the matrix which defines the microflake. Despite its
efficiency, their method produces less satisfying results, especially
for low-roughness fabrics.

Recently, neural-based approaches have been proposed for multi-
scale appearance representation. NeuMIP [Kuznetsov et al. 2021]
prefilters the neural textures with a latent texture mipmap. A similar
prefiltering idea has been used by Zeltner et al. [2024], except they
encode material parameters into latent vectors. These methods can
provide high-quality rendering results and acceptable time costs
due to their lightweight network structure. However, they must
be trained per material, which costs extra time and restricts their
practicality. Unlike over-fitted neural representations, MIPNet [Gau-
thier et al. 2022] produces mip-mapped textures of spatially varying
BRDFs (SVBRDFs). MIPNet requires a tensor-based reformulation
of specific shading models, making it less flexible to support other
models.

3 BACKGROUND AND MOTIVATION
Woven fabrics are made of weft and warp yarns, which are inter-
laced in a particular pattern. Each yarn is built by twisting plies,

Real-time Neural Woven Fabric Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

where each ply aggregates a set of fibers. In this paper, we focus
on fabrics with a single ply for each yarn to demonstrate the effec-
tiveness of our network, following previous work [Jin et al. 2022].
These different levels of structures can be modeled in several ways:
volume, curve, or surface, where both volume and curve-based
models are too heavy for real-time rendering. Hence, we opt for
surface models. In this section, we recap the related fabric surface
models that are close to our method. Later, we show the motivation
and formulation of our method.

3.1 Preliminaries
Fabric surface model. Recently, Jin et al. [2022] proposed a sur-

face model for woven fabrics, including the geometric and shading
models. In their geometric model, each yarn is expressed as a curved
cylinder, defined by the twist and inclination angle of the yarns,
and the width and length of the yarns. These parameters with the
underlying yarn pattern (Fig. 1 in the supplementary) establish the
normal and tangent of yarns, forming microstructures on the cloth
surface. Their shading model 𝑓r consists of a specular term 𝑓 sr and
a diffuse term 𝑓 dr , where the former is based on the SpongeCake
model [Wang et al. 2022] with a fiber-like microflake phase func-
tion, and the latter is a blended Lambertian term considering both
macro-surface normal 𝑛s and the ply normal 𝑛p:

𝑓r (𝜔i, 𝜔o) = 𝑓 sr (𝜔i, 𝜔o) + 𝑓 dr (𝜔i, 𝜔o),

𝑓 sr (𝜔i, 𝜔o) =
𝑘s𝐷 (ℎ)𝐺 (𝜔i, 𝜔o)
4 cos𝜔i · cos𝜔o

,

𝑓 dr (𝜔i, 𝜔o) = 𝑤
𝑘d⟨𝜔i · 𝑛p⟩
𝜋 ⟨𝜔i · 𝑛s⟩

+ (1 −𝑤)𝑘d
𝜋
,

(1)

where 𝜔i and 𝜔o are the incoming and outgoing directions, re-
spectively. 𝑘d and 𝑘s are the diffuse and specular albedo respec-
tively, and𝑤 is the weight for blending the two Lambertian terms.
The specular term includes the distribution 𝐷 on the half vector ℎ
between 𝜔i and 𝜔o, and the attenuation 𝐺 along the media with
density 𝜌 and thickness 𝑇 . They are defined as:

𝐷 (ℎ) = 1
𝜋𝛼𝑞2

, where 𝑞 = ℎ⊤𝑆−1ℎ,

𝐺 (𝜔i, 𝜔o) =
1 − 𝑒−𝑇𝜌 (Λ(𝜔i)+Λ(𝜔o))

Λ(𝜔i) + Λ(𝜔o)
,

Λ(𝜔) = 𝜎 (𝜔)
cos𝜔

, where 𝜎 (𝜔) =
√
𝜔⊤𝑆𝜔,

(2)

where𝛼 represents roughness and 𝑆 is a symmetric, positive definite
3× 3 matrix. In detail, 𝑆 = diag(1, 1, 𝛼2) is for a microflake oriented
along the ply direction, and other orientations can be achieved
by defining 𝑆 ′ = 𝑅⊤𝑆𝑅 for any 3 × 3 rotation matrix 𝑅. 𝜎 is the
projected area, and Λ is the Smith shadowing-masking function. In
practice, 𝑇𝜌 is always assigned a value of 2 for fabrics. The height
field scaling factor 𝛽 is introduced to adjust the height field of plies,
which affects both the normal 𝑛p and orientation 𝑡p. All the shading
model parameters are summarized in Table 1.

Later, Zhu et al. [2023a] improve the model above by introduc-
ing a bidirectional transmission distribution function (BTDF) and
the shadowing-masking effects between the yarns, detailed in the
supplementary.

Table 1: Parameters in the shading model of fabric.

Parameter Definition
𝑛p ply normal
𝑡p ply orientation
𝑥p ply position

𝑘d (𝑘
warp
d , 𝑘weftd) diffuse albedo (for warp or weft yarns)

𝑘s (𝑘
warp
s , 𝑘wefts) specular albedo (for warp or weft yarns)

𝛼 (𝛼warp, 𝛼weft) roughness (for warp or weft yarns)
𝛽 (𝛽warp, 𝛽weft) height field scaling (for warp or weft yarns)

Fabric surface BSDF aggregation. The woven fabric surface is
made of microstructures, which are smaller than a single pixel, lead-
ing to a sub-pixel appearance. These micro-structures are captured
by sampling the rays within a pixel. Unfortunately, it is impossible
to have a high sample rate in real-time rendering. Therefore, the
core of real-time fabric rendering is a multi-scale representation
which allows efficient aggregation. Zhu et al. [2023a] propose an
aggregation BSDF defined on a patch P seen from a pixel, which
includes visibility terms to enable shadowing-masking effects be-
tween yarns:

𝑓P (𝜔i, 𝜔o) =
1

𝐴P (𝜔o)

∫
P
𝑓𝑝 (𝜔i, 𝜔o)⟨𝜔i · 𝑛p (𝑝)⟩

𝑉 (𝑥p (𝑝), 𝜔i)𝐴(𝑝,𝜔o)𝑘P (𝑝)d𝑝,
(3)

where 𝑝 is a point within the patch P. A kernel 𝑘P is defined
as

∫
P 𝑘P (𝑝)d𝑝 = 1 to normalize the area. 𝑉 (𝑥p, 𝜔) is the binary

visibility function of position 𝑥p in direction 𝜔 and 𝐴(𝑝,𝜔o) is the
visible projected area along 𝜔o defined as:

𝐴(𝑝,𝜔o) =
⟨𝜔o · 𝑛p (𝑝)⟩
⟨𝑛s · 𝑛p (𝑝)⟩

𝑉 (𝑥p (𝑝), 𝜔o), (4)

where 𝑛s is surface normal and 1
⟨𝑛s ·𝑛p (𝑝) ⟩ is the Jacobian | d𝑥p (𝑝)d𝑝 |.

𝐴P (𝜔o) is the total visible projected area in patch P along 𝜔o:

𝐴P (𝜔o) =
∫
P

⟨𝜔o · 𝑛p (𝑝)⟩
⟨𝑛s · 𝑛p (𝑝)⟩

𝑉 (𝑥p (𝑝), 𝜔o)𝑘P (𝑝)d𝑝 =
⟨𝜔o · 𝑛f (P)⟩
⟨𝑛s · 𝑛f (P)⟩ ,

(5)
where 𝑛f (P) is the average visible micro-scale normal over the
patch P.

3.2 Motivation
Zhu et al. [2023a] evaluate the integral of Eqn. (3) in the Monte-
Carlo manner, leading to variance when under-sampled and pre-
venting it from being used for real-time rendering. Therefore, the
core problem is to solve Eqn. (3) efficiently on fabric materials to
enable real-time rendering and editing. The function defined by
Eqn. (3) is high-dimensional, which includes the geometry and ap-
pearance parameters. One straightforward way to represent such
a high-dimension function is to use a neural network. This neural
network has to meet the following requirements: fast inference,
capability of representing multiple woven fabrics, and editability. The
fast inference allows real-time rendering; the ability to represent
multiple typical woven fabrics with a single neural network which

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Chen et al.

Specular

Sweft Swarp

BSDF

Diffuse

Cweft Cwarp

ωi

ωo

Figure 2: Separation of BSDF distributions. We separate the
BSDF value into several components, considering specu-
lar/diffuse and yarn type (weft/warp). Thanks to this sep-
aration, the distributions become much simpler. The BSDF
or components are visualized by mapping the incoming di-
rections to the horizontal axis and the outgoing direction
to the vertical axis. Here, we use a plain pattern with white
color and compute its BSDF/component values by Monte-
Carlo point sampling within a patch with the query size set
as 205 × 205.

avoids per-material training; and the editability enables material
editing.

The main challenge is designing a network to meet these re-
quirements simultaneously. Fast inference requires a lightweight
network; however, a lightweight network usually has limited rep-
resentation ability. Most lightweight neural networks are used for
per-material representation [Kuznetsov et al. 2021; Zeltner et al.
2024]. To this end, our key insight is the characteristics of woven
fabrics, which have regular and repetitive patterns. For editability,
we procedurally represent the materials with parameters rather
than only using spatially-varying maps [Zhu et al. 2023a]. In this
way, the material has more flexibility for editing.

4 METHOD
In this paper, we first reformulate the fabric aggregation shading
model (Sec. 4.1). Then, we design a neural network to represent the
shading model (Sec. 4.2). Finally, we apply the neural network for
real-time rendering and material editing (Sec. 4.3).

4.1 Reformulation of fabric shading model
The aggregation form of the fabric shading model is shown in
Eqn. (3), which is essentially a mapping from the geometry and

appearance parameters to a BSDF value, given a query of incom-
ing/outgoing directions and a patch (𝜔i, 𝜔o,P):

{𝑛p, 𝑡p, 𝑥p, 𝛼, 𝛽, 𝑘d, 𝑘s, 𝜔i, 𝜔o,P} → 𝑓P (𝜔i, 𝜔o), (6)

where 𝑛p, 𝑡p, 𝑥p are geometry parameters and 𝛼, 𝛽, 𝑘d, 𝑘s are ap-
pearance parameters defined in Table 1. A straightforward way to
represent this mapping is using a neural network directly. How-
ever, this mapping mixes several distributions: the specular/diffuse
distribution and the warp/weft distribution. As these different dis-
tributions have high variance, representing such mapping becomes
difficult for a lightweight network. Therefore, we separate the map-
ping function into different components:

{𝑛p, 𝑡p, 𝛼, 𝛽, 𝜔i, 𝜔o,P} → {𝐶warp,𝐶weft, 𝑆warp, 𝑆weft}, (7)

where 𝐶warp,𝐶weft, 𝑆warp, 𝑆weft represent the diffuse or specular
term for warp or weft yarn respectively. We remove 𝑘d and 𝑘s from
the input, as they depend on the yarn types (weft or warp) only.
We also remove 𝑥p, as it has been implicitly expressed by normal
𝑛p and orientation 𝑡p. The final shading function 𝑓P is defined as:

𝑓P (𝜔i, 𝜔o) = 𝑘
warp
d 𝐶warp+𝑘weftd 𝐶weft+𝑘

warp
s 𝑆warp+𝑘wefts 𝑆weft . (8)

The final formulation is a mapping from geometry parameters
(𝑛p, 𝑡p), appearance parameters (𝛼, 𝛽) and a query (𝜔i, 𝜔o,P) to four
values (𝐶warp,𝐶weft, 𝑆warp, 𝑆weft). With this new formulation, the
mapping has a much simpler distribution, as shown in Fig. 2.

4.2 Neural representation
With the reformulated aggregated shading model, we now design a
neural network to represent the mapping. As we discussed previ-
ously, there are three types of inputs: geometry, appearance, and
query parameters. The geometry and appearance parameters es-
tablish a material, and the query on the same material should be
consistent. To this end, we leverage a typical encoder-decoder struc-
ture for the aggregated shading model, where the encoder com-
presses the geometry and appearance parameters into a material
latent vector 𝑧 and the decoder interprets the latent vector into
the different components (𝐶warp,𝐶weft, 𝑆warp, 𝑆weft), given a query
(𝜔i, 𝜔o,P). The network structure is shown in Fig. 3.

Encoder. The encoder compresses the geometry and appearance
parameters into a latent vector 𝑧. The key to designing this encoder
is fusing these two types of parameters. We take two types of inputs:
geometry textures for the pattern and the procedural appearance
parameters for the others. We first encode textures (normal map
and orientation map) into features with ResNet [He et al. 2016].
In practice, we use a modified ResNet-18 without the last residual
block, as it does not improve the quality while leading to longer
training and inference time. Then, we feed the feature together with
the appearance parameters into a residual block, which consists of
two fully connected layers of size 128, and output a material latent
vector of size 64.

Decoder. With the material latent vector, we decode it into four
components given a query. In the query, we have the spatial inputs
(shading position and query range of P) and the angular inputs
(light and view directions). The naive way to handle these inputs
is concatenating all of them together and interpreting them by a
decoder at the same time. However, it does not work well since

Real-time Neural Woven Fabric Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

FC = Fully Connected
LReLU = Leaky ReLU

np

tp

R
es

N
et

M
at

er
ia

l l
at

en
t v

ec
to

r

C
on

ca
te

na
ti

on

β

64

64
64 64

64 64
64

4

24
5

4
4

Encoder

Spatial
fusion

Angular
decoder

Decoder

α

weft
FC

LReLU
FC

LReLU

128
128

Cwarp

Cweft

Swarp

Sweft

warp

𝒫

Residual
Block Residual

Block

One-blob
Encoding

ωi
ωo

FC
LReLU FC

LReLU
FC

LReLU FC
LReLU

FC
LReLU

FC
LReLU

FC
LReLU

128

Figure 3: The structure of our neural network. Our network consists of an encoder and a decoder. The encoder takes the input
of fabric patterns (normal and orientation textures) and parameters (roughness and height field scaling). These inputs are
encoded into a material latent vector by the encoder, which consists of a modified ResNet [He et al. 2016] and an MLP. Then,
the material latent vector is fused with the spatial query (P) first, concatenated with the angular inputs (𝜔i, 𝜔o) and then fed to
the angular decoder to get four components. Both the encoder and decoder include a residual block composed of two fully
connected layers and a skip connection before the last leaky ReLU function.

the spatial parameters dominate the main distribution. Also, the
output value must be consistent with varying angular parameters
given specific spatial parameters. Therefore, we fuse the material
latent vector with the spatial parameters and then concatenate
it with the angular parameters. In this way, a small decoder is
enough to achieve multi-scale representation. In practice, we apply
one-blob encoding [Müller et al. 2021] to the position and size
of P, extending them from 3 to 24 channels. This encoding aids
the network in distinguishing the spatial inputs better. Then, we
use two fully connected layers to fuse the material latent vector
with the spatial parameters to get a spatial feature. Finally, the
spatial feature, together with the angular inputs, is interpreted by
a decoder—angular decoder to get the final four BSDF components,
where the angular decoder consists of five fully connected layers
with one skip connection. Note that the angular inputs consist of
three channels (𝑥 , 𝑦, 𝑧) for the light direction and two channels (𝑥 ,
𝑦) for the view direction. The 𝑧 component for the light direction
is needed, as it might be negative for transmission.

Loss functions. We compute the ground-truth values of the four
terms (𝐶warp,𝐶weft, 𝑆warp, 𝑆weft) by sampling the integral in Eqn. (3),
and then we introduce a specular loss and a diffuse loss.

Regarding the specular loss, we find that the distribution of
specular has a wide range. Therefore, similar to NeuMIP [Kuznetsov
et al. 2021], we perform a mapping 𝑔(𝑥) = ln(𝑘𝑥 + 1) on the ground
truth values, and then use the mean squared error (MSE) loss:

𝐿𝑜𝑠𝑠𝑆 (𝑓
pred
𝑆

, 𝑓
gt
𝑆
) = 1

𝑁

𝑁∑︁
𝑖=1

(𝑓 pred
𝑆

− 𝑔(𝑓 gt
𝑆
))
2
, (9)

where 𝑓
pred
𝑆

and 𝑓
gt
𝑆

represent the network output and the target,
respectively, for both 𝑆warp and 𝑆weft. 𝑁 denotes the number of
corresponding terms in a training batch. In practice, we find 𝑘 = 100
for BRDF and 𝑘 = 1000 for BTDF are good choices.

For the diffuse terms 𝐶warp and 𝐶weft, we also use the MSE loss:

𝐿𝑜𝑠𝑠𝐶 (𝑓
pred
𝐶

, 𝑓
gt
𝐶
) = 1

𝑁

𝑁∑︁
𝑖=1

(𝑓 pred
𝐶

− 𝑓
gt
𝐶
)
2
. (10)

Combining the specular and diffuse loss functions together leads
to our final loss:

𝐿𝑜𝑠𝑠 (𝑓 pred, 𝑓 gt) =
∑︁
𝐼

𝜆𝑆𝐿𝑜𝑠𝑠
𝑖
𝑆 (𝑓

pred
𝑆i

, 𝑓
gt
𝑆i
)

+
∑︁
𝐼

𝜆𝐶𝐿𝑜𝑠𝑠
i
𝐶 (𝑓

pred
𝐶i

, 𝑓
gt
𝐶i
),

(11)

where 𝑖 is one of the yarn types 𝐼 (warp or weft). 𝜆𝑆 and 𝜆𝐶 are the
hyperparameters, set as 0.4 and 0.1 in practice.

4.3 Rendering and editing
Now, we use our neural network for real-time rendering and mate-
rial editing. In practice, we integrate our network into Falcor [Kall-
weit et al. 2022], and adopt NVIDIA TensorRT for inference.

Rendering. Before rendering, for all the fabric materials in the
scene, we get their material latent vectors with our encoder. During
rendering, we shoot a ray to get a shading point at each pixel. Then,
we prepare the query (𝜔i, 𝜔o, P) and compute the lighting. Next,
we infer the decoder with the query and the material latent vector
to get 𝐶warp, 𝐶weft, 𝑆warp and 𝑆weft. Finally, we compute the BSDF
value with these four components and multiply it by the lighting
to get the final rendering result. Note that only the decoder needs
to be evaluated during rendering.

Editing. Our method allows editing of the following parameters:
albedos (𝑘d, 𝑘s), roughness, height field scaling factor, and fabric
patterns. To edit albedos, we only need to change color textures,
and no encoder inference is needed, as they are not coupled with
the network. To edit the other parameters, we need to infer the
encoder to update the material latent vector, which costs about 0.5

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Chen et al.

Table 2: Distributions to sample the parameter space of our
model.U(𝑥,𝑦) represents a continuous uniform distribution
in the interval (𝑥,𝑦). V(𝑋) is a discrete uniform random
variable on a finite set 𝑋 .

Parameter Sampling Function
yarn pattern 𝑊 = V({0, 1, 2, 3, 4, 5, 6})
twist angle 𝜓 = V({−30, 0, 30})

inclination angle 𝑢 = U(15, 45)
roughness 𝛼 = U(0.1, 1)

height field scaling 𝛽 = U(0, 2)
footprint position 𝑝 = (U(0, 1),U(0, 1))
footprint size 𝑠 = U(V({(0, 1), (1, 5)}))

incoming direction 𝜔i = (U(−1, 1),U(−1, 1))
outgoing direction 𝜔o = (U(−1, 1),U(−1, 1))

ms. After getting the material latent vector, the following steps are
the same as rendering. Although the encoder needs to be inferred
during editing, it costs negligible time. Thus, our method supports
real-time editing of fabric materials.

5 IMPLEMENTATION DETAILS
5.1 Data preparation
To generate the synthetic training dataset, we modify the shad-
ing model by Jin et al. [2022], including the transmission and the
shadowing-masking effects between yarns within a fixed-size patch.
The main difference from Zhu et al. [2023a] is that their model in-
cludes a delta transmission and computes the shadowing-masking
term within the pixel’s footprint. Note that our network is compat-
ible with most woven fabric surface shading model, and we choose
the current shading model for simplicity.

We sample parameters to generate the dataset with the sampling
functions shown in Table 2. Specifically, we choose seven fabric
patterns, including plain, twill 3×3, twill 5×5, twill 8×8, satin 5×5,
satin 8 × 8 and satin 5 × 10. The gap size is set as 0.2, which means
the gap takes up 20% of the yarn. For each pattern, we generate
different sets (9 for the plain pattern and 4 for others) of normal
and orientation textures by sampling the twist angle 𝜓 and the
inclination angle 𝑢. Then, we uniformly sample the roughness and
height field scaling factor, producing 9 sets for the plain pattern and
16 sets for other patterns. In total, we generate 81 plain materials,
192 twill materials, and 192 satin materials.

For eachmaterial, we generate queries by sampling the footprints
and the incoming/outgoing directions. For the footprint center, we
partition the pattern texture into 8 × 8 grids and perform uniform
sampling at each grid. Then, for each footprint center, we generate
different footprint sizes by uniformly locating 10 samples in the
range [0, 𝐿𝑡] and another 10 samples in the range [𝐿𝑡 , 5𝐿𝑡], where
𝐿𝑡 is the pattern texture size. Then, we sample the 𝜔𝑖 and 𝜔𝑜 by
stratified sampling the 𝑥 and 𝑦 components of both directions in
a 8 × 8 grid and computing the 𝑧 component for both BRDF and
BTDF. As a result, we have around 2500 valid pairs of directions
for each footprint, leading to about 3.2 million queries per material.
After establishing the materials and queries, we compute their BSDF
components (𝐶warp, 𝐶weft, 𝑆warp and 𝑆weft) using 2048 samples to

avoid noise. The time cost of data generation is about 22 minutes
per material and 165 hours in total.

5.2 Training details
Our network is implemented in the PyTorch framework, using
the SGD optimizer. In practice, we use a learning rate of 5 × 10−2
for all the weights, which decays by 0.2 at the sixth and ninth
epoch, and we also add a regularization to all the weights. During
training, materials are randomly chosen for each iteration. We
uniformly choose about 160 million queries out of the entire data as
the training dataset and organize 512 queries as one batch. We train
the network for 10 epochs, which took about 4 days on a single
NVIDIA RTX 3090 GPU.

6 RESULT
In this section, we evaluate our method and compare it against
previous works. We take 256 samples per pixel (SPP) to get the
converged results of themodified Jin et al. [2022] as the ground truth
(GT). In our experiments, we only consider the direct illumination
from a point or directional light source.

All the given timings are total time costs measured on a GeForce
RTX 3090 GPU, except for the time costs of the BSDF evaluation
in Table 2 (supplementary). We use MSE to measure the difference
between each method and the ground truth, and visualize the dif-
ferences with FLIP [Andersson et al. 2021]. The resolutions of all
the results are set as 1920 × 1080.

6.1 Comparison against previous work
In this section, we make comparisons with modified Jin et al. [2022]
(taken as baseline) and NeuMIP [Kuznetsov et al. 2021]. For fair-
ness, we use the same-sized decoder for NeuMIP as our angular
decoder, and compare our method with NeuMIP only on seen BRDF
materials, since NeuMIP must be trained per material and does
not support BTDFs. In Fig. 4, we compare our method with the
baseline (1 SPP), the baseline (equal time) and NeuMIP (1 SPP). By
comparison, we find that the baseline (1 SPP) produces results with
apparent aliasing, even with a higher sample rate. In contrast, our
results are free from aliasing and closer to the ground truth. As
for NeuMIP, it can produce results with a higher quality than ours
in terms of MSE, at the cost of a higher storage and per-material
training. In particular, the storage of our network is less than 5 MB,
while the storage of NeuMIP is over 50 MB for each neural material.
As NeuMIP is trained per material, its storage increases with the
number of materials in the scene, while the storage of our method
keeps constant. Furthermore, our network can be applied to three
typical types of woven fabrics once trained, but NeuMIP have to be
trained per material which takes a long time.

In Fig. 1, we compare our method with the baseline (2 SPP) on
a complex scene with multiple fabrics. The result of the baseline
has noticeable aliasing, while our result is smooth and closer to the
ground truth. Meanwhile, our result has lower MSE than theirs. We
provide more comparisons in Fig. 5 for BRDF and Fig. 6 for BTDF on
unseen materials. In both scenes, our method performs better than
the baseline with 1 SPP in terms of MSE. For equal-time comparison,
our results have much less noise and aliasing for both BRDF and

Real-time Neural Woven Fabric Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Table 3: Time cost of our method for each scene in microsec-
ond. “Others” refers to the non-neural steps (ray intersection,
data transmission and scene shading).

Scene Inference Others
Single Cloth (Fig. 4) 14.3 2.9
Bowl Cloth (Fig. 5) 13.9 4.0

Lamp (Fig. 6) 14.4 2.9
Sofa (Fig. 1) 13.6 4.8

BTDF, although our results have higher MSE occasionally. More
results of unseen materials are provided in the supplementary.

6.2 Ablation study
Encoding of footprint. We apply one-blob encoding [Müller et al.

2021] to the query footprint’s position and size. We validate its
impact in Fig. 7, by comparing the results with and without the
one-blob encoding. By comparison, we find that the result with
encoding has lower MSE, less artifacts, and a closer specular shape
to the GT. This proves that the encoding improves performance.

Spatial fusion. In our decoder, we perform the spatial query
by fusing the material latent vector with the footprint and then
perform the angular query. We validate the impact of this spatial
fusion in Fig. 7, by comparing the results of our network with and
without the spatial fusion. For fairness, we increase the number of
hidden layers in the angular decoder when removing the spatial
fusion. We find that the result without spatial fusion shows obvious
artifacts and higher MSE.

6.3 Interpolation and editing
Interpolation. The material latent vectors produced by the en-

coder form a material latent space. We study the behavior of the
material latent space by interpolating or extrapolating between
two given material latent vectors using parameters as the weights.
In practice, we investigate the interpolation and extrapolation of
two material latent vectors using the roughness (left) and height
field scaling factor (right) as the weights in Fig. 8. Here, two given
material latent vectors are obtained by performing the encoder
with the parameter (roughness/height field scaling factor) set as
0.2 and 0.8. Then, the material latent vectors at 0.3 or 0.6 are com-
puted by interpolation, while the material latent vector at 0.9 is
computed by extrapolation. We compare the results of these inter-
polated/extrapolated material latent vectors (bottom) with the ones
generated by the encoder directly (top). The results show that the
interpolation/extrapolation of material latent vectors can produce a
smooth transition and match the results rendered with the directly
encoded material latent vectors.

Editing. In Fig. 9, we show the results of material parameter
editing, including roughness, height field scaling factor, pattern
and albedos. Our method can produce various rendering results
when editing these parameters. In particular, our method is able to
represent spatial-varying appearances when applying albedo maps,
by computing 𝑘d and 𝑘s via mipmapping. In the supplementary
video, we also show the efficiency of our material editing.

6.4 Performance analysis
In Table 3, we analyze the run-time performance of our method and
show the breakdown cost of neural and non-neural steps. The neural
step is the inference of our decoder, and the non-neural refers to
the steps without the network (ray intersection, data transmission,
and shading). We do not include the time cost of our encoder, as it
is only inferred when initializing or editing materials, which takes
only about 0.5 ms. As shown in the table, our method can achieve
real-time rendering. Moreover, as shown in the supplementary
video, our method keeps a stable frame rate at different scales when
zooming in and out.

6.5 Discussion and limitations
Our real-time neural network can representmulti-scale appearances
of multiple woven fabrics, which avoids training the network per
material. However, our method still has some limitations.

Evaluation time. We use TensorRT to deploy our neural network,
and the efficiency is optimized automatically. Other techniques
could be used to accelerate its speed further. One solution is rewrit-
ing it by Slang as Zeltner et al. [2024]. Another option is using a
small NeuMIP-style texture pyramid of latent codes to make the
decoder smaller.

Network representing ability. Similar to NeuMIP [Kuznetsov et al.
2021], our representing ability is still limited by the network. For
example, both NeuMIP and our method can not handle very sharp
variations, as shown in the twill results of Fig. 4.

Importance sampling. Our paper mainly focuses on BSDF eval-
uation without considering the importance sampling. To enable
importance sampling, one solution is predicting the outgoing di-
rection and its probability density function with a neural network,
following Zeltner et al. [2024].

Energy conservation. Similar to prior works [Zeltner et al. 2024],
our method cannot guarantee energy conservation due to the bias
of the neural representation. That is to say, more energy might be
added, although we have not observed any noticeable issues.

Capability of our fabric model. We exclude the delta transmis-
sion and procedural perturbation in our model, which restricts the
realism of the fabric appearance. It is possible to include the delta
transmission by getting the gap ratio for a given query with the neu-
ral network and then compute the delta transmission through the
gap ratio. For the procedural perturbation, combining our method
with some real-time procedural glints approaches may be one solu-
tion.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a lightweight neural network to represent
multiple woven fabric materials at multiple scales. Our key obser-
vation is the regular and repetitive characteristics of woven fabric
patterns, which enables the possibility of representing multiple
materials with a compact latent space. Specifically, we introduce a
simple encoder-decoder structure, where the encoder compresses
the fabric pattern and other parameters into a material latent vec-
tor, and the decoder interprets the material latent vector with a

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Chen et al.

spatial fusion component and a small angular decoder. Thanks to
the lightweight encoder and decoder, our network is able to achieve
real-time rendering and editing. Meanwhile, our network only oc-
cupies a small storage of 5 MB, even for scenes with multiple fabric
materials.

In the future, there are still many potential research directions.
Currently, our network supports three typical woven fabric types.
More types of woven fabrics and knitted fabrics are still missing
from our representation. The other types of woven fabrics can be
handled by expanding our dataset. However, representing knitted
fabrics is difficult, as their structures significantly differ fromwoven
fabrics. We leave it for future work. It is also worth exploring ways
to enable rendering fabrics with spatially-varying patterns.

ACKNOWLEDGMENTS
We thank the reviewers for the valuable comments. This work has
been partially supported by the National Science and Technology
Major Project under grant No. 2022ZD0116305 and National Nat-
ural Science Foundation of China under grant No. 62272275 and
62172220.

REFERENCES
Neeharika Adabala, Nadia Magnenat-Thalmann, and Guangzheng Fei. 2003. Real-time

rendering of woven clothes. In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (VRST ’03). Association for Computing Machinery, New
York, NY, USA, 41–47. https://doi.org/10.1145/1008653.1008663

Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A. Otaduy, Jorge Lopez-Moreno,
and Adrian Jarabo. 2017. An Appearance Model for Textile Fibers. Computer
Graphics Forum 36, 4 (2017), 35–45. https://doi.org/10.1111/cgf.13222

Pontus Andersson, Jim Nilsson, Peter Shirley, and Tomas Akenine-Möller. 2021. Vi-
sualizing Errors in Rendered High Dynamic Range Images. In Eurographics Short
Papers. https://doi.org/10.2312/egs.20211015

Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor
Ostromoukhov. 2013. Linear Efficient Antialiased Displacement and Reflectance
Mapping. ACM Trans. Graph. 32, 6, Article 211 (nov 2013), 11 pages. https:
//doi.org/10.1145/2508363.2508422

Alban Gauthier, Robin Faury, Jérémy Levallois, Théo Thonat, Jean-Marc Thiery, and
Tamy Boubekeur. 2022. MIPNet: Neural Normal-to-Anisotropic-Roughness MIP
Mapping. ACM Trans. Graph. 41, 6, Article 246 (nov 2022), 12 pages. https:
//doi.org/10.1145/3550454.3555487

KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. 2015. The SGGX
microflake distribution. ACM Trans. Graph. 34, 4, Article 48 (jul 2015), 11 pages.
https://doi.org/10.1145/2766988

Piti Irawan and Steve Marschner. 2012. Specular reflection from woven cloth. ACM
Trans. Graph. 31, 1, Article 11 (feb 2012), 20 pages. https://doi.org/10.1145/2077341.
2077352

Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner.
2010. A radiative transfer framework for rendering materials with anisotropic
structure. ACM Trans. Graph. 29, 4, Article 53 (jul 2010), 13 pages. https://doi.org/
10.1145/1778765.1778790

Wenhua Jin, Beibei Wang, Milos Hasan, Yu Guo, Steve Marschner, and Ling-Qi Yan.
2022. Woven Fabric Capture from a Single Photo. In SIGGRAPHAsia 2022 Conference
Papers (SA ’22). Association for Computing Machinery, New York, NY, USA, Article
33, 8 pages. https://doi.org/10.1145/3550469.3555380

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa
Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman,
Cyril Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https:
//github.com/NVIDIAGameWorks/Falcor

Anton S. Kaplanyan, Stephen Hill, Anjul Patney, and Aaron Lefohn. 2016. Filtering
Distributions of Normals for Shading Antialiasing. In Eurographics/ ACM SIGGRAPH
Symposium on High Performance Graphics, Ulf Assarsson and Warren Hunt (Eds.).
The Eurographics Association. https://doi.org/10.2312/hpg.20161201

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2016. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1, Article 1 (dec 2016), 26 pages. https://doi.org/10.1145/2818648

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: Multi-Resolution Neural Materials. ACM Trans. Graph. 40, 4, Article
175 (jul 2021), 13 pages. https://doi.org/10.1145/3450626.3459795

Guillaume Loubet and Fabrice Neyret. 2017. Hybrid mesh-volume LoDs for all-scale
pre-filtering of complex 3D assets. Computer Graphics Forum 36, 2 (2017), 431–442.
https://doi.org/10.1111/cgf.13138

Zahra Montazeri, Søren B. Gammelmark, Shuang Zhao, and Henrik Wann Jensen. 2020.
A practical ply-based appearance model of woven fabrics. ACM Trans. Graph. 39, 6,
Article 251 (nov 2020), 13 pages. https://doi.org/10.1145/3414685.3417777

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4, Article 36
(Aug. 2021), 36:1–36:16 pages. https://doi.org/10.1145/3450626.3459812

Marc Olano and Dan Baker. 2010. LEAN Mapping. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’10). Association
for Computing Machinery, New York, NY, USA, 181–188. https://doi.org/10.1145/
1730804.1730834

Iman Sadeghi, Oleg Bisker, Joachim De Deken, and Henrik Wann Jensen. 2013. A
practical microcylinder appearance model for cloth rendering. ACM Trans. Graph.
32, 2, Article 14 (apr 2013), 12 pages. https://doi.org/10.1145/2451236.2451240

Beibei Wang, Wenhua Jin, Miloš Hašan, and Ling-Qi Yan. 2022. SpongeCake: A Layered
Microflake Surface Appearance Model. ACM Trans. Graph. 42, 1, Article 8 (sep
2022), 16 pages. https://doi.org/10.1145/3546940

Lance Williams. 1983. Pyramidal parametrics. In Proceedings of the 10th Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’83). Association
for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/
800059.801126

Lifan Wu, Shuang Zhao, Ling-Qi Yan, and Ravi Ramamoorthi. 2019. Accurate appear-
ance preserving prefiltering for rendering displacement-mapped surfaces. ACM
Trans. Graph. 38, 4, Article 137 (jul 2019), 14 pages. https://doi.org/10.1145/3306346.
3322936

Chao Xu, Rui Wang, Shuang Zhao, and Hujun Bao. 2017. Real-Time Linear BRDF
MIP-Mapping. Computer Graphics Forum 36, 4 (2017), 27–34. https://doi.org/10.
1111/cgf.13221

Tizian Zeltner, Fabrice Rousselle, Andrea Weidlich, Petrik Clarberg, Jan Novák,
Benedikt Bitterli, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn.
2024. Real-Time Neural Appearance Models. ACM Trans. Graph. (apr 2024).
https://doi.org/10.1145/3659577 Just Accepted.

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building volu-
metric appearance models of fabric using micro CT imaging. ACM Trans. Graph.
30, 4, Article 44 (jul 2011), 10 pages. https://doi.org/10.1145/2010324.1964939

Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling
scattering parameters for rendering anisotropic media. ACM Trans. Graph. 35, 6,
Article 166 (dec 2016), 11 pages. https://doi.org/10.1145/2980179.2980228

Junqiu Zhu, Adrian Jarabo, Carlos Aliaga, Ling-Qi Yan, and Matt Jen-Yuan Chiang.
2023a. A Realistic Surface-Based Cloth Rendering Model. In ACM SIGGRAPH 2023
Conference Proceedings (SIGGRAPH ’23). Association for Computing Machinery,
New York, NY, USA, Article 5, 9 pages. https://doi.org/10.1145/3588432.3591554

Junqiu Zhu, Zahra Montazeri, Jean-Marie Aubry, Ling-Qi Yan, and Andrea Weidlich.
2023b. A Practical and Hierarchical Yarn-based Shading Model for Cloth. Computer
Graphics Forum 42, 4 (2023), 2–11. https://doi.org/10.1111/cgf.14894

https://doi.org/10.1145/1008653.1008663
https://doi.org/10.1111/cgf.13222
https://doi.org/10.2312/egs.20211015
https://doi.org/10.1145/2508363.2508422
https://doi.org/10.1145/2508363.2508422
https://doi.org/10.1145/3550454.3555487
https://doi.org/10.1145/3550454.3555487
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2766988
https://doi.org/10.1145/2077341.2077352
https://doi.org/10.1145/2077341.2077352
https://doi.org/10.1145/1778765.1778790
https://doi.org/10.1145/1778765.1778790
https://doi.org/10.1145/3550469.3555380
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.2312/hpg.20161201
https://doi.org/10.1145/2818648
https://doi.org/10.1145/3450626.3459795
https://doi.org/10.1111/cgf.13138
https://doi.org/10.1145/3414685.3417777
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/1730804.1730834
https://doi.org/10.1145/1730804.1730834
https://doi.org/10.1145/2451236.2451240
https://doi.org/10.1145/3546940
https://doi.org/10.1145/800059.801126
https://doi.org/10.1145/800059.801126
https://doi.org/10.1145/3306346.3322936
https://doi.org/10.1145/3306346.3322936
https://doi.org/10.1111/cgf.13221
https://doi.org/10.1111/cgf.13221
https://doi.org/10.1145/3659577
https://doi.org/10.1145/2010324.1964939
https://doi.org/10.1145/2980179.2980228
https://doi.org/10.1145/3588432.3591554
https://doi.org/10.1111/cgf.14894

Real-time Neural Woven Fabric Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

MSE: 1.04e-1

MSE: 1.78e-3

MSE: 5.33e-3

MSE: 3.19e-2

MSE: 1.34e-3

MSE: 3.41e-3

MSE: 1.06e-1

MSE: 7.07e-3

MSE: 7.89e-3

MSE: 3.10e-2

MSE: 2.23e-3

MSE: 2.51e-3

Satin

Twill

GT (Time: 1177.6 ms)
Ours (Time: 17.2 ms)

Storage: 4.4 MB
NeuMIP (Time: 9.6 ms)

Storage: 52.4 MB
Modified Jin et al. [2022]

1 SPP (Time: 4.6 ms)
Modified Jin et al. [2022]

4 SPP (Time: 18.4 ms)

Plain

Figure 4: Comparison among our method, NeuMIP [Kuznetsov et al. 2021] and modified Jin et al. [2022] on seen materials.
While NeuMIP produces the lowest MSE occasionally, it has to be trained per material and does not support editing. The results
by modified Jin et al. [2022] show noticeable aliasing, even with more samples. In contrast, our results are much smoother and
free from aliasing.

GT (Time: 1868.8 ms) Ours (Time: 17.9 ms)
Modified Jin et al. [2022]

1 SPP (Time: 7.3 ms)
Modified Jin et al. [2022]

3 SPP (Time: 21.9 ms)

MSE: 1.04e-2 MSE: 5.83e-2 MSE: 2.31e-2

Figure 5: Comparison between our method and modified Jin et al. [2022] on an unseen material (a twill 4 × 4 pattern). Our
method produces results with lower MSE and less aliasing than both rendering results (1 SPP and 3 SPP) by modified Jin et
al. [2022].

GT (Time: 1280.0 ms) Ours (Time: 17.3 ms)
Modified Jin et al. [2022]

1 SPP (Time: 5.0 ms)
Modified Jin et al. [2022]

3 SPP (Time: 15.0 ms)

MSE: 2.01e-3 MSE: 2.22e-3 MSE: 7.69e-4

Figure 6: Comparison between our method and modified Jin et al. [2022] on an unseen BTDF material (a plain pattern). Both
rendering results (with 1 SPP and 3 SPP) by modified Jin et al. [2022] have apparent aliasing, while our results are closer to the
ground truth.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Chen et al.

GT

MSE: 5.33e-3

Ours
(w/o encoding)

Ours
(w/ encoding and spatial fusion)

Ours
(w/o spatial fusion)

MSE: 8.19e-3 MSE: 1.82e-2

Figure 7: The influence of two designs (the one-blob encoding and the spatial fusion) in our network. With both components,
our network has a more powerful representation ability, leading to a higher quality of rendering results.

E
va

l.
In

te
rp

./E
xt

ra
p.

0.3 0.6 0.9 0.3 0.6 0.9

H
eight field scaling

R
oughness

Figure 8: Interpolation and extrapolation of material latent vectors with roughness (left) and height field scaling factor (right)
as the weights. The interpolated/extrapolated material latent vectors can produce rendered results similar to those obtained by
the directly encoded material latent vectors.

No editing Edit roughness (α) Edit height field scaling (β) Edit pattern (np, tp) Edit color (kd, ks)

Figure 9: Our method supports real-time editing of several parameters, including roughness, height field scaling factor, pattern
(normal and orientation textures), and albedos, producing various rendering results.

	Abstract
	1 Introduction
	2 Previous work
	3 Background and Motivation
	3.1 Preliminaries
	3.2 Motivation

	4 Method
	4.1 Reformulation of fabric shading model
	4.2 Neural representation
	4.3 Rendering and editing

	5 Implementation details
	5.1 Data preparation
	5.2 Training details

	6 Result
	6.1 Comparison against previous work
	6.2 Ablation study
	6.3 Interpolation and editing
	6.4 Performance analysis
	6.5 Discussion and limitations

	7 Conclusion and future work
	Acknowledgments
	References

