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Abstract Global Illumination (GI) plays a crucial role
in rendering realistic results for the virtual exhibition, e.g.,
the virtual car exhibition. These scenarios usually include
all-frequency bidirectional reflectance distribution functions
(BRDFs), although the geometry and the light configuration
might be static. Rendering all-frequency BRDFs in real-time
is still challenging due to the complex light transport. Existing
approaches, including precomputed radiance transfer, light
probes, or the most recent path tracing-based approaches
(ReSTIR PT), can not satisfy both quality and performance
requirements at the same time. In this paper, we propose a
practical hybrid global illumination approach, combining ray
tracing and cached GI by caching the incoming radiance with
wavelets. Our approach can produce close results to offline
renderers at the cost of only about 17 ms at runtime and is
robust over all-frequency BRDFs. Our approach is designed
for applications with static lighting and geometries, like the
virtual exhibition.

Keywords Real-time Global Illumination, All-Frequency
BRDFs, Haar Wavelets, Radiance Caching.

1 Introduction
The effects of realistic materials, all-frequency shadows, and
global illumination are significant for photorealistic render-
ing, which enhances the renderings’ realism. However, the
computation of these effects is time-consuming, especially
for real-time rendering.
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Our method mainly aims at virtual exhibitions, e.g., virtual
car exhibitions. The scenarios usually have dynamic views in
such an application and might cover all-frequency bidirec-
tional reflectance distribution functions (BRDFs), but with
static lighting and geometries. Therefore, we make the same
assumption in our paper.

In the real-time rendering domain, the precomputed radi-
ance transfer (PRT) of Sloan et al. [1], Ng et al. [2, 3] and
light probes [4, 5] are widely used. The approaches based
on PRT support all-frequency shadows, glossy reflections,
and dynamic lighting at the cost of expensive storage. Most
of the light probes-based approaches only focus on diffuse
materials, such as dynamic diffuse global illumination [5]
(DDGI).

Recently, path tracing combined with advanced sampling
strategies and denoising has become a possible solution for
real-time global illumination. The advanced sampling strate-
gies include the resampled importance sampling (RIS) [6]
for direct illumination [7] or global illumination [8]. Both of
them don’t work well for low-roughness materials. Recently,
ReSTIR PT [9] enabled all-frequency material rendering,
thanks to the generalized resampled importance sampling
(GRIS), but the results are not noise-free.

This paper aims to achieve real-time global illumination
effects with all-frequency shadows and interreflections on
glossy objects. For that, we propose a practical hybrid global
illumination solution, which combines ray tracing and cached
GI. The cached GI is responsible for direct illumination
from non-delta light sources (e.g., area lights, environment
maps) and the indirect illumination of objects with low-
frequency to intermediate-frequency BRDFs from all light
sources. The ray tracing handles the indirect illumination of
specular or near-specular materials from all light sources and
direct illumination from delta light sources (e.g., point lights,
directional lights).

In our cached GI approach, we use wavelets to represent
the incoming radiance and BRDFs at a precomputation step
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x, n Position and normal of shading point
V Binary visibility
Li Light source
Lo Outgoing radiance
Lirradiance Irradiance of a point
ωi,ωo Incident and outgoing directions
fr BRDF
fd, fg BRDFs of diffuse and glossy materials
fs Specular term of glossy materials’ BRDF
fc Clear coat term of the clear coat BRDF
Fc Fresnel term of the clear coat BRDF
γ Clear coat parameter
cbase Diffuse color defined for the material
T Transport operator
Ψj , Ψk Orthonormal basis functions
C Mathor scaling Coeffs
Di Detail wavelet Coeffs
lj , tk Coeffs of light and light transport
L,T Coeffs vectors of light and light transport
Cradiance Coeffs vectors of cached radiance
CBRDF Coeffs vectors of the glossy BRDF

Table 1 Notations.

and perform an efficient convolution during rendering. In
particular, we cache irradiance for the diffuse materials. In
the end, our method is able to provide high-quality results,
which match the references, with only about 17 ms.

2 Previous work
Precomputed radiance transfer (PRT). Sloan et al.used
the spherical harmonic (SH) basis to restore soft shadows,
reflections, and caustic effects. Ng et al. [3] replaced SH
with wavelets, so their method can represent all-frequency
shadows and reflections. Wang et al. [10] introduced PRT and
separable BRDF approximation, allowing for the rendering of
glossy objects in complex and dynamic lighting environments.
PRT-based approaches can handle global illumination effects
with dynamic lighting at the cost of expensive storage.

Real-time Monte Carlo path tracing. Recently, RIS has
been introduced into real-time rendering to sample direct
illumination, low-frequency GI, and high-frequency GI. The
recent generalized form of RIS allows for glossy indirect
illumination. Müller et al. [11] further introduced the neural
radiance caching into real-time path tracing to accelerate
rendering by learning and rendering the radiance distribution
online with a neural network.

Light probes. The irradiance volume [12, 13] or light
probes-based approaches have been widely used in the video
game industry due to their efficiency. They subdivided scenes
into discretized points, represented the irradiance distribution

at these points during the precomputation, and queried the
light probes during rendering. Majercik et al. [5] proposed
the dynamic solution for diffuse global illumination. They
updated both the irradiance and visibility with ray tracing at
runtime. Most of these works only focus on diffuse materials,
except one of the recent studies by Rodriguez et al. [14],
which allows for glossy interreflections. Unfortunately, it’s
time-consuming and not suitable for real-time rendering.
Majercik et al. [15] have also extended the DDGI to glossy
materials, but they forced second-order glossy reflections to
maximum roughness leading to unfaithful results.

Point-based global illumination. The point-based global
illumination (PBGI) is first proposed by Christensen [16] for
color bleeding in the offline rendering domain. The point
cloud and hierarchical structure are treated as a geometric
proxy of the geometry, so they can be rasterized to solve the
visibility. PBGI has also been extended to real-time rendering
[17, 18], but they focus on diffuse global illumination. They
can not handle glossy interreflections and caustics since the
radiance is represented with SH. Later, Wang et al. [19]
replaced SH with wavelets, allowing for non-diffuse light
transport, but their work is too heavy for real-time rendering.

3 Background and overview
We first introduce the rendering equation and PRT in this
section. Then we give an overview of our approach.

3.1 Rendering equation

The rendering equation [20] is the core of global illumination:

Lo(x,ωo) =

∫
Ω

Li(ωi)fr(x,ωi,ωo)(n · ωi)dωi, (1)

whereωi is the incident direction,ωo is the outgoing direction
(also called a view direction), and n is the surface normal.
Lo is the outgoing radiance at a position x from the view
direction ωo, Li is the lighting and fr is the BRDF.

3.2 Precomputed radiance transfer

The rendering equation can be reformulated to achieve real-
time rendering by caching a part of its composition, like
PRT.

Ng et al. [3] defined a transport operator T , which includes
both the BRDF and a visibility term V :

T (x,ωi,ωo) = fr(x,ωi,ωo)V (x,ωi)(n · ωi). (2)

Then, Eq. (1) is transformed into the integral of the product
of the incoming light and the light transport operator:

Lo(x,ωo) =

∫
Ω

Li(ωi)T (x,ωi,ωo)dωi. (3)



Real-time All-frequency Global Illumination with Radiance Caching 3

Fig. 1 Overview of our hybrid global illumination method on a Vehicle scene. The precomputation is shown on the left, and the runtime
rendering is on the right. In the precomputation stage, each BRDF is precomputed as a half cube map and compressed with Haar wavelets
(left top). The scene is discretized into several point clouds by the mesh index (ID). The incoming radiance distribution of each point in
point clouds is also precomputed as a half cube map and represented with Haar wavelets. Then the whole spatial hierarchy (octrees) is
constructed to organize the lighting of the point clouds. Note that the wavelets for each half cube map are organized in a quadtree manner.
During rendering, given a shading point, we traverse the spatial hierarchy to get a cached point and then perform the convolution of BRDFs
and lighting caching, resulting in partial results. We compute the direct illumination of delta lights directly without caching and shoot rays
on the specular or near-specular surfaces, then combine with the cached GI to get the final rendered results.

To achieve real-time frame rates, Li and T are precom-
puted and represented with the appropriate orthonormal basis
function Ψj(ωi). j and k are the serial numbers of the basis
functions. For a given shading point with fixed values for x
and ωo:

Li(ωi) =
∑
j

ljΨj(ωi), (4)

T (ωi) =
∑
k

tkΨk(ωi), (5)

resulting in the following final formation:

Lo =

∫
Ω

(
∑
j

ljΨj(ωi))(
∑
k

tkΨk(ωi))dωi

=
∑
j

ljtj = L · T. (6)

Finally, the integral is converted into a dot product of the
coefficients vectors of L and T.

Compared with PRT, our method can compute and store the
radiance by highly compressed wavelet coefficients at each
point. Aided by the octree structure for query acceleration
and the wavelet quadtree structure for fast convolutions, our
method can obtain all-frequency shadows and interreflections
at runtime.

3.3 Overview

The crucial insight of our approach is to cache the lighting and
BRDFs in a precomputed step and then perform the efficient
convolution of these two components during rendering. For
the specular or near-specular effects and the direct illumination
of delta light sources that are too sharp for the cached GI, we
compute them by ray tracing.

More specifically, in the precomputation step (Section 4),
we generate the point clouds and represent the materials
(BRDFs) with Haar wavelets first. Then we represent the
lighting by caching the incoming radiance distribution on
point clouds with wavelets and organizing the point clouds into
a spatial hierarchy constructed by octrees. During rendering
(Section 5), we search the hierarchy to find the incoming
radiance distribution and then perform a product of the wavelet
coefficients for the lighting and the BRDF, as shown in Fig. 1.

4 BRDFs and Lighting precomputation

In the precomputation step, each mesh is discretized into
a point cloud (Section 4.1). Then, we precompute all the
BRDFs in the scene and represent each of them with wavelets
(Secion 4.2). Next, we precompute and compress the incoming
radiance distribution of each point and organize them into
octrees (Section 4.3).
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4.1 Point clouds generation

For each mesh in the scene, we generate a point cloud with
Poisson disk sampling [21]. Given a desired point count M ,
we first generate more points with random sampling, where
the number of the points for each mesh triangle is with respect
to its area. In practice, we generate 5×M random-distributed
points. Then we eliminate the points iteratively to obtain
a uniformly distributed point cloud. Note that the sample
points are organized by a KD-Tree and organized into a heap
structure for efficient elimination.

To decide which sample point to eliminate, we measure the
closeness of each point to its neighboring points with weight.
Wij is the weight between sample point i and j (i ̸= j):

Wij = (1− min(dij , 2rmax)

rmax
)α, (7)

where dij is the distance between sample point i and j. rmax

is the maximum radius, set as
√
A2/(2

√
3n), where A2 is an

area of the sampling area. n is a desired number of samples
after elimination, and α is an exponential constant used to
control the weight, set as 8 in practice. The weight Wi of
sample point i is the sum of Wij corresponding to sample
point j within 2rmax distance from sample point i.

At each iteration, we eliminate the sample point with the
highest weight and then adjust the weights of the remaining
sample points dynamically. The iteration stops when the
number of sample points meets the input point count. This
way, the distribution of the remaining points becomes uniform.

4.2 BRDFs precomputation and compression

In our paper, we focus on three types of materials: diffuse,
glossy, and clear coat BRDFs.

As for the diffuse, we use the Lambertian diffuse material:

fd(ωi,ωo) =
1

π
cbase, (8)

where cbase is the diffuse color.
Then, we use a Cook-Torrance model [22] for the glossy

material, which includes both a diffuse term fd defined by
Eq. (8) and a specular term fs:

fg(ωi,ωo) = fd(ωi,ωo)+fs(ωi,ωo), (9)

where fs is a typical microfacet model [23]:

fs(ωi,ωo) =
D(h)F (ωo, h)G(ωi,ωo, h)

4(n · ωi)(n · ωo)
, (10)

where D is the normal distribution function (NDF) [24], F is
a Fresnel term and G is the masking-shadowing function [25].
We use GGX as our NDF and Schlick’s approximation [26]
for the Fresnel term.

Lastly, we add a clear coat term from the Google Filament
engine [27] for the glossy material:

fclearcoat(ωi,ωo) = fg(ωi,ωo)(1− Fc)

+ fc(ωi,ωo), (11)

where fc is the clear coat BRDF, modeled with a typical
microfacet model, and Fc is the Fresnel term of the clear coat
BRDF:

Fc = (0.04 + 0.96(1− (ωo · h))5)γ, (12)

where γ is a clear coat parameter in the material, which
controls the strength of the clear coat effect.

Precomputation. The diffuse material is computed at run-
time, which is shown in Section 5.2. For each glossy material,
we precompute the distribution of the BRDF. We sample
the outgoing direction ωo by uniform hemisphere sampling.
Its sampling density is set to 172 × 1080. Then, for each
sampled ωo, we represent the distribution of the incoming
direction ωi with a half cube map. Here, we use the local
coordinate system by aligning the z−axis of the cube map
with the surface shading normal. In practice, for each ωo, we
compute the BRDF value according to the ωi at each pixel of
the half cube map. The resolution of the cube map is set to
128× 128 in practice.

Compression. We use the quadtree form wavelet transform
to project the half cube map of BRDFs onto Haar bases.
The quadtree is constructed in a bottom-up fashion. Each
node contains a mother scaling coefficient C, three detail
wavelet coefficients Di (i = 0, 1, 2), and four child indices.
The coefficients of the current node are computed with the
mother scaling coefficients of its child nodes, defined by cj
(j = 0, 1, 2, 3):

C =
c0 + c1 + c2 + c3

2
, D0 =

c0 − c1 + c2 − c3
2

,

D1 =
c0 + c1 − c2 − c3

2
, D2 =

c0 − c1 − c2 + c3
2

.
(13)

If the child node is a leaf node, ci is the pixel color in the
half cube map. During compression, when all the coefficients
of a node and its child nodes are below a certain threshold
(β), we discard them. This way, we can control the coefficient
quadtree’s degree of compression by the threshold. In practice,
we set β to 0.2 when the roughness value is greater than 0.2;
otherwise, 0.1.

4.3 Lighting caching and octree construction

For each point in the point clouds, we precompute its incoming
radiance distribution or irradiance and organize each point
cloud into an octree.
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Fig. 2 Results of ZeroDay using our method. The comparison between our final result and the reference is shown on the left. The result of
the convolution of BRDFs and lighting caching is shown on the right (top). The ray tracing result is shown on the right (bottom).

Table 2 Resolution of radiance cube map under different rough-
ness.

Roughness Resolution
[0.10, 0.35] 128×128
(0.35, 0.55] 64×64
(0.55, 0.65] 32×32
(0.65, 1.0] 16×16

Lighting caching. Object with different material type is
treated differently. We store the irradiance rather than incom-
ing radiance for the object with the diffuse material since it is
view-independent:

Lirradiance(x) =
∫
Ω

Li(x,ωi)(n · ωi)dωi, (14)

where Lirradiance is the irradiance at the position x of each
point in the point clouds.

Different from the diffuse material, we precompute the
incoming radiance for the object with the glossy material,
regardless of whether it has a clear coat or not. During caching,
we locate a half cube map around each point and compute the
incoming radiance for the half cube map with path tracing
(the sample count is set as 128 for each path). The resolution
of the radiance cube map is determined by the roughness
of the object material, which is shown in Table 2. Then we
compress each half cube map with wavelets in a quadtree
form, the same as the BRDFs. The discard threshold β is set
to 1,000.

Octree construction. We organize the point clouds into
octrees, where each point stores the lighting caching, including

the irradiance or the incoming radiance represented by wavelet
coefficients in the quadtree form.

We construct the octree in a top-down fashion. Starting
from the axis-aligned bounding box (AABB) of the whole
mesh, each node is subdivided uniformly into eight child
nodes according to the AABB. This subdivision for each node
continues when the point count at each leaf node is larger
than a certain threshold (set as 30 in practice). Finally, the
leaf nodes of the octree contain all the cached points.

After constructing the octrees for all meshes, we update the
information of each node in a bottom-up manner, including
the bounding box and the normal. The leaf node’s bounding
box is computed by the bounding box of its points, while the
non-leaf node’s bounding box is computed by the union of
the bounding boxes of its child nodes. The normal of each
node is set as an average of the normals in its points or child
nodes.

5 Real-time global illumination
During runtime, we compute the result of ray tracing first.
Then we search and convolute the BRDFs and lighting
caching. At last, we merge them to get the final real-time
global illumination.

5.1 Ray tracing

As for ray tracing, we compute the direct illumination of
delta lights and clear coat effects. And we also trace rays to
compute the indirect illumination for low-frequency materials.
For diffuse materials, the equation is as follows:

Lo(x,ωo) = fd(ωi,ωo)Li(x,ωi)(ωi · n). (15)
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Fig. 3 Results of Vehicle using our method. The comparison between our final result and the reference is shown on the left. The result of
the convolution of BRDFs and lighting caching is shown on the right (top). The ray tracing result is shown on the right (bottom).

For glossy materials, the equation is as follows:

Lo(x,ωo) = fg(ωi,ωo)Li(x,ωi)(ωi · n). (16)

For glossy materials with clear coat effects, the equation is as
follows:
Lo(x,ωo) = fg(ωi,ωo)Li(x,ωi)(ωi · n)(1− Fc)

+ fc(ωi,ωo)Li(x,ωi)(ωi · n).
(17)

We trace an extra clear coat ray along the direction of the
original ray’s specular reflection to compute the clear coat
term. The maximum tracing depth is set to 3.

For objects with low-frequency materials, when the ray
(including the clear coat ray) hits the shading point with the
roughness that is less than 0.1, we treat it as a mirror. Besides,
we continue to trace the ray along the direction of the perfect
specular reflection until the ray hits the environment map or
reaches its maximum tracing depth. When the ray hits the
environment map, we compute the indirect illumination with
the ambient light Lenv:

Lo(x,ωo) = F (ωo, h)Lenv(x,ωi), (18)

where F is a Fresnel term. In practice, the maximum tracing
depth is set to 4.

5.2 Convolution of BRDFs and lighting caching

During rendering, we search for the caching of BRDFs and
Lighting and then compute the convolution of them in the
quadtree form. The BRDFs coefficients are queried through
the material index (ID) and view direction ωo by the inverse
uniform hemisphere sampling in the hemispherical space. The
lighting caching is queried by three steps. First, we find the
octree by the mesh ID of the shading point. Then we search

for leaf nodes that contain the target point in the octree by
a distance threshold. Finally, we select the most appropriate
point for the shading point in the leaf nodes according to a
mixed weight of the position and normal direction.

After searching, for diffuse materials, we compute the
result by the diffuse color cbase and irradiance Lirradiance.

Lo(x,ωo) =
1

π
cbaseLirradiance(x). (19)

For glossy materials, we convolve the coefficients of BRDFs
CBRDF and cached radiance Cradiance in the quadtree form
to get the final result.

Lo(x,ωo) = CBRDF ⊗Cradiance. (20)

As for the glossy material with a clear coat, we additionally
multiply by the ratio (1− Fc) as follows:

Lo(x,ωo) = (CBRDF ⊗Cradiance)(1− Fc). (21)

The clear coat term is computed by ray tracing.

We take the ZeroDay and Vehicle scenes as examples to
show the results of ray tracing and the convolution of BRDFs
and lighting caching, respectively, in Fig. 2 and Fig. 3.

6 Implementation details
In this section, we focus on the details of the BRDFs precom-
putation, lighting caching, octree construction, and runtime
rendering. While precomputing the BRDFs, we dispatched
the tasks to 16,384 GPU threads at once for GPU acceleration.
And the lighting caching tasks were dispatched to 8,192 GPU
threads in practice. We have implemented our method on
the Falcor GPU rendering framework (4.3 version) [28] for
runtime rendering.
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Fig. 4 Comparison between PRT and our method on the BistroPart (top) and Dragon (bottom) scenes.

BRDFs precomputation. Before precomputation, for
BRDFs defined with textures (e.g., diffuse map), we cat-
egorized the BRDFs with similar properties (diffuse color,
etc.) into groups and then performed BRDF precomputation
for each group by treating it as a single BRDF. Note that the
indices of these groups were stored in the alpha channel of
the BRDF texture.

When computing the half cube maps for BRDFs, for a ωo,
we applied stratified sampling to ωi in the half cube map
to avoid the stripe artifacts in the rendering results. During
compression, we stored the coefficients of BRDFs and cached
radiance in the half data type to reduce the storage size, which
was sufficient to obtain the same rendering results as the float
type.

Lighting caching and octree construction. While com-
puting the lighting, we divided the radiance in each radiance
half cube map by the solid angle in the corresponding direc-
tion [29] for energy conservation. After computation, as for
diffuse materials, we added up all the incident radiance stored
in the half cube map to get the irradiance for each point.

We constructed an octree for each mesh to improve the
query accuracy for the cached points at the intersection
of meshes. The reflections and shadows of objects with

diffuse materials or high-roughness glossy materials are
view-independent. Thus, on the objects with low-frequency
reflections and shadows, we computed the result with sparse
points for lighting caching, which has a similar result with
the dense points (e.g., the inner shadow on the floor in Fig.
4 bottom). In practice, during construction, we removed the
points that have minor energy differences with neighboring
points by the probability based on the statistics of the average
energy differences in the whole point cloud. The points
elimination rate is about 47%.

Runtime rendering. We implemented our method with
three passes: the V-Buffer pass, GI pass, and TAA pass. In the
V-Buffer pass, we generated the initial V-Buffer to cache the
instance type, instance index, primitive index, and barycentric
coordinates for each shading point. The GI pass is the main
pass that is used to compute ray tracing and the convolution of
BRDFs and lighting caching. Finally, the results were merged
to get the final global illumination. We computed mipmap
levels for normal maps in this pass to reduce flicker artifacts.
The TAA pass is used for anti-aliasing.

While searching BRDFs, first, we got four BRDFs co-
efficient quadtrees from the four neighboring directions of
the view direction ωo by the inverse uniform hemisphere
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Fig. 5 Comparison between ReSTIR PT and our method on the scenes including VeachAjar (top), Vehicle (middle), Matballs (bottom).

sampling. Then we performed the bilinear interpolation on
the four quadtrees to reduce the discontinuity of the rendering
results and the storage of BRDFs coefficients while using a
sparse ωo sampling density. After the interpolation, the new
quadtree’s depth is the same as the lowest one in the four
quadtree depths.

When querying the lighting caching in an octree, we
controlled the maximum number of searching points in all
searched nodes by a parameter m to improve the search speed.
Besides, we also discarded the point whose energy is lower
than a set threshold. Because it is probably the point under
the object surfaces or in the folds and might influence the
search of other points.

During the convolution of BRDFs and lighting caching,
we controlled the traversal layers of quadtrees to balance
performance and quality. Besides, we reduced the computation
and offered a way to simulate the effect of the high-roughness
glossy materials by using a low quadtree depth. However,
it inevitably brought some artifacts. Therefore, we made a
tradeoff in practice.

7 Results
We first compare our global illumination method with PRT
(Ng et al. [3]), ReSTIR PT, and DDGI. Next, we show the per-
formance measures of our method in different test scenes and
the parameter analysis in the Dragon scene. We implemented
ReSTIR PT from the released code and reimplemented PRT
by us. References were computed by standard path tracing
with multiple samples per pixel (spp). We quantified the
error by the mean squared error (MSE). All the results were
rendered on a high-end desktop machine (i9 10900k and RTX
3090) at a resolution of 1920× 1080.

7.1 Comparison with previous work

Comparison with PRT. The BistroPart scene (Fig. 4 top)
contains three diffuse materials and an environment map. In
this scene, we have cached the irradiance at 400,000 points
only. PRT has cached the visibility distribution at 34,325
vertexes, the lighting distribution from the environment map,
and the BRDFs distribution of three materials. Compared
with the 1.61 GB caching storage of PRT, our method has an
advantage in storage which is only 0.02 GB. And it is almost
6 times faster than PRT at runtime.
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Fig. 6 Compared to ReSTIR PT (a) on the ZeroDay scene, our approach (b) is noise-free and has similar quality with reference (c), in
about 17 ms per frame.

Table 3 Performance measures of our method in different test scenes. The precomputed storage (pre-storage) includes the caching of
BRDFs and lighting. The precomputed time (pre-time) includes the time cost of BRDFs and lighting.

Scenes No. of No. of No. of Pre-time (h) Pre-storage (GB) Runtime memory Runtime
triangles points materilas BRDFs Lighting BRDFs Lighting Main (GB) GPU (GB) time (ms)

Dragon 132,768 81,579 2 2 4 2.55 0.57 3.8 4.4 11.9
BistroPart 38,938 400,000 3 0 10 0 0.02 0.678 1.01 6.65
VeachAjar 750,900 1,317,000 11 6 31 6.73 6.43 11.4 13.54 17.15
Vehicle 889,241 600,000 14 5 30 3.38 15.9 19.55 20.3 16.78
ZeroDay 419,615 692,000 6 2.5 20 4.39 1.61 6.66 7.99 16.85
MatBalls 203,640 500,000 5 2.5 13.5 6.28 7.75 14.71 15.2 17.8

In the Dragon scene (Fig. 4 bottom), there are two glossy
materials and an environment map. The caching of our method
consists of the radiance distribution at 81,579 points and the
BRDFs distribution of two glossy materials. The caching of
PRT includes the visibility distribution at 100,277 vertexes,
the lighting distribution from the environment map, and the
BRDFs distribution of two materials. Our method’s caching
storage is 3.12 GB which is larger than PRT’s (2.47 GB)
because the BRDFs distribution of glossy materials takes up
most of the caching storage. At runtime, the performance of
our method is about 56 times faster than PRT.

By comparison, PRT precomputes the lighting distribu-
tion from an environment map for every vertex, while our
method precomputes the independent lighting distribution for
each point. Thus, our method can compute the all-frequency
shadows and reflections that have more details than PRT,
especially in the high-frequency parts.

Comparison with ReSTIR PT. We compare the results
of our method with ReSTIR PT in the VeachAjar, Vehicle,
MatBalls, and ZeroDay scenes, as shown in Fig. 5 and Fig.
6. All the materials in the scenes are glossy. Besides, the
Vehicle (car shell), Matballs (cyan ball), and ZeroDay (floor
and canons) scenes have the clear coat effect.

Different from ReSTIR PT, the results of our method
are basically noise-free by the benefit of ray tracing and the

convolution of BRDFs and lighting caching without sampling.
Our results have no color bias. The results of ReSTIR PT
have an obvious color bias, especially on objects with a clear
coat and low-frequency BRDFs (e.g., the car shell). Because
it is limited to the shift mapping strategies of the path reuse.
At runtime, the time cost of our method is less than ReSTIR
PT with 1-3 spp in the test scenes.

Comparison with DDGI. We compare the indirect illu-
mination results of our method with DDGI [5] in the Table
scene, as shown in Fig. 7. The Table scene has four diffuse
materials, a point light, and a directional light. We precom-
puted the irradiance at 400,000 points, and the caching of
DDGI contains 45 × 8 × 45 light probes. With the equal
time cost at runtime, our method has less caching storage
(22.80 MB) than DDGI (31.64 MB). Besides, our results
preserve richer indirect lighting details and have lower MSE
than DDGI during rendering.

7.2 Performance and storage

We show the scene scale (number of triangles) and perfor-
mance measures of our method in Table 3 for different test
scenes. For general complex scenarios, our method takes up
about 17 ms per frame at runtime, with almost no quality loss
compared with the reference. But our method requires up to
several hours of precomputation time. Fortunately, as long as
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Fig. 7 Comparison of the indirect illumination between DDGI and our method on the Table scene.

Fig. 8 Time cost during runtime using our method. Note that
we computed global illumination with irradiance instead of the
convolution of BRDFs and lighting caching in the BisroPart scene.

the scene does not change (with static objects and lighting),
the precomputation only needs to be done once.

Table 3 also shows the storage of cached information and
runtime memory of our method. In precomputation stage,
the storage of lighting caching is influenced by the geometry
complexity of the meshes, which directly determines the
points number. Besides, it is also affected by the complexity
of the lighting distribution at the points. Such as the VeachA-
jar scene, both the geometry and lighting distribution are
complex. Thus a large number of points are needed to store
the lighting information. Furthermore, we cached the lighting
distribution with a larger half cube map size for the scene
with low roughness materials according to Table 2. For those
two scenes of VeachAjar and Vehicle, we can see that the
VeachAjar scene has more points, but with large roughness
values (0.17-1.0), while the Vehicle scene has fewer points,
and its car shell has a low roughness value (0.11). Thus the
Vehicle scene requires more than twice lighting caching stor-
age compared to the former. The storage of BRDFs caching
is mainly determined by the number of glossy materials and
the distribution complexity of the BRDFs, which is related to

their roughness. The scene with diffuse materials (e.g., the
BistoPart scene) has less storage than the scene with glossy
materials (e.g., the Dragon scene). The main memory and
GPU memory at runtime depend mainly on the total storage
of BRDFs and lighting caching.

Table 4 Performance measures of our method with different points
number in the Dragon scene.

Points Precomputation of lighting Runtime
Time (h) Storage (MB) Time cost (ms) MSE

81,579 4 582 11.9 1.2e-4
50,320 1.83 314 11.3 2.1e-4
33,762 1 176 11.2 2.4e-4
19,396 0.5 93.4 11.1 3.6e-4

9,698 0.32 46.9 10.8 6.0e-4

Fig. 8 shows our method’s time cost of ray tracing, convo-
lution, and others. The others include V-Buffer computing,
primary ray shooting, intersecting, etc. The VeachAjar scene
only contains an area light source behind the door. The other
scenes all have an environment map. For the Vehicle and
ZeroDay scenes, we additionally provided the delta lights.
In Fig. 8, the scenes of Dragon, BistroPart, and VeachAjar
have no time cost of ray tracing. Because we computed the
global illumination for non-delta lights with BRDFs and
lighting caching instead of ray tracing. When computing
the convolution, the GPU parallelism is influenced by the
different traversal depths of the coefficient quadtrees, which
depend on the BRDF roughness. The roughness values of the
materials in the MatBalls scene cover a large range from 0.2
to 0.8, which makes the traversal difficult, so the MatBalls
scene’s convolution of BRDFs and lighting caching takes up
the largest time cost.

Our method also supports normal maps with the same
storage of BRDFs for flat materials. Fig. 9 shows our results
of different normal maps in the CarInterior scene. No matter
how bumpy the normal maps are, we only precomputed
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Fig. 9 Comparation of the results without (left) or with (middle) normal maps using our method on the CarInterior scene. The reference
with normal maps is shown on the right.

Fig. 10 Comparation of the results with different sampled points amount using our method on the Dragon scene.

BRDFs without normal maps in the local space. Then for a
certain type of normal map, while searching the BRDFs byωo

at runtime, we transformed the ωo from world space to local
space with different normal vectors first. Therefore, the normal
maps just influence the coordinate system transformation of
the ωo. And we have no need to precompute other new
BRDFs. In Fig. 9, our results with and without normal maps
both have the same BRDFs storage (0.35 GB). As for more
bumpy normal maps, GPU takes more time to access memory
randomly to get the cached BRDFs coefficients at runtime.
Therefore, our result with bumpy normal maps consumes
2.76 ms time cost more than the result without normal maps.

7.3 Parameter analysis

Varying number of points. We generated point clouds
with different points number for the Dragon scene and show
the performance measures of our method in Table 4. The
related results are shown in Fig. 10. With more points, the
caching storage of lighting increases significantly, leading to
more time costs during rendering. However, the quality of
our results has also been improved, while the MSE between
our results and the references gets lower.

Varying roughness. In Fig. 5, we show the results of five
material balls with varying roughness values (0.2, 0.4, 0.6,
0.8, and 0.8 with a clear coat effect) in the MatBalls scene.

Our method obtains the same results as the offline renderer in
a wide roughness range with the 17.8 ms time cost at runtime.

7.4 Limitations and discussions

We recognize the following limitations. First, to simplify the
query of BRDFs, we discretized the ωo in the hemispherical
space and computed the distribution of BRDFs with ωi. This
inevitably leads to a lot of storage. We consider organizing
ωo and ωi from a four-dimensional perspective to obtain a
more compact representation. Second, for BRDFs defined
with textures, the excessive number of colors in the texture
map results in a huge number of BRDFs, which lead to large
caching storage.

Our method supports general complex scenarios, such as
the Vehicle scene with 889,241 triangles and 95 objects. But
for extremely complex scenarios (e.g., a large-scale forest
scene), it is still a challenge for our method to store a large
number of points to keep lighting details. A feasible solution
is to use a neural network to represent the BRDFs and lighting
caching, which is an interesting topic in the future.

8 Conclusion and future work
In this paper, we have presented a new hybrid real-time
global illumination method that combines ray tracing and the
convolution of BRDFs and lighting caching. During the pre-
computation, we offer a point clouds generator to compute the
points that conform to the Poisson distribution, a new wavelet
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compression structure in the quadtree form for BRDFs and
cached radiance, and a compact spatial hierarchy for lighting
caching. At runtime, our method has results close to the
offline renderer in only 17 ms based on various optimizations,
such as octree-accelerated searching and quadtree-accelerated
convolutions. It can compute all-frequency shadows and re-
flections in static scenes, which is noise-free. As for scenes
with diffuse materials, our method is almost 6 times faster than
PRT and has less caching storage at runtime. It is suitable for
applications that allow static lighting and geometric scenes,
primarily virtual exhibitions.

In the future, we will combine deep learning to provide a
more compact representation and avoid the interpolation for
lighting and BRDFs. Furthermore, our approach might be a
good proxy for path guiding.
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