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Figure 1: Comparison between path tracing, ReSTIR GI [OLK∗21] and our method with equal time on two scenes (SAN MIGUEL and
BATHROOM) with complex indirect lighting. The mean squared errors (MSE) are shown under the images. The image resolution is 1920 ×
1080. Our method outperforms the other methods both visually and quantitatively.

Abstract
With the advent of hardware-accelerated ray tracing, more and more real-time rendering applications tend to render images
with ray-traced global illumination (GI). However, the low sample counts at real-time framerates bring enormous challenges
to existing path sampling methods. Recent work (ReSTIR GI) samples indirect illumination effectively with a dramatic bias
reduction. However, as a screen-space based path resampling approach, it can only reuse the path at the first bounce and brings
subtle benefits for complex scenes. To this end, we propose a world-space based spatiotemporal path resampling approach.
Our approach caches more path samples into a world-space grid, which allows reusing sub-path starting from non-primary
path vertices. Furthermore, we introduce a practical normal-aware hash grid construction approach, providing more efficient
candidate samples for path resampling. Eventually, our method achieves improvements ranging from 16.6% to 41.9% in terms
of mean squared errors (MSE) compared against the previous method with only 4.4% ∼ 8.4% extra time cost.
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1. Introduction

Monte Carlo path tracing has been popular for offline render-
ing for years. In recent years, with the development of hardware-
accelerated ray tracing [EHNB18, Tak20], path tracing can also be
used for real-time rendering by tracing a few rays per pixel. How-
ever, insufficient sampling leads to intractable noisy images. Hence,
it is essential to design effective sampling strategies so that abun-
dant scene lighting can be simulated at low sampling rates.

Bitterli et al. [BWP∗20] introduce the reservoir-based streaming
resampled importance sampling (RIS) to direct illumination (DI),
called ReSTIR DI. The resampling cost is amortized among frames
and neighbors in the screen space, improving direct illumination at
a low time cost. Later, ReSTIR GI [OLK∗21] extends ReSTIR for
global illumination (GI), by resampling the path samples for vis-
ible points in the temporal and spatial domains, resulting in obvi-
ous noise reduction. However, the improvements are subtle in sev-
eral scenarios, including high-frequency geometry variation, dis-
tant scene lighting, and glossy materials, due to resampling with
screen-space buffers. World-space ReSTIR [Boi21] caches light
sample reservoirs in the world space, producing noisy results due to
the lack of path resampling. ReSTIR PT [LKB∗22] generalizes the
RIS theory with robust multiple importance sampling (MIS) weight
and incorporates other shift mappings to handle complicated scene
lighting, resulting in remarkable quality improvement at the cost of
expensive time overhead due to the hybrid shift mapping.

In our paper, we introduce a practical world-space path resam-
pling into ReSTIR GI. More specifically, we generalize the reused
paths starting from the primary vertices to paths of any length, i.e.,
an entire path or a path suffix starting from non-primary vertices,
and then use a world-space hash grid to organize these path sample
reservoirs. Our approach can immediately be used for glossy mate-
rials, by resampling the subsequent points of the glossy materials.
Thanks to world-space resampling, our approach can effectively
reuse samples in more complicated scenes and distant scenes, as
well as resampling indirect lighting for glossy materials. As a re-
sult, our method 12 Thanks to the efficiency of the grid structure,
it only takes extra less than 10% overhead than ReSTIR GI to ob-
tain such an improvement. Compared to ReSTIR PT, our method is
lightweight, and can be used for real-time applications, while Re-
STIR PT produces higher quality at the cost of three times slower
than our method.

We review the related work in the next section and briefly intro-
duce the ReSTIR theory in Section 3. We present our resampling
approach in Section 4 and discuss the implementation details in
Section 5. Then we show our results in Section 6 and conclude in
Section 7.

2. Previous work

In this section, we briefly review related works, including path
reuse [BSH02,BPE17], path guiding [MGN17,DGJ∗20,HEV∗16],
resampling and mutation strategies [TCE05, KMA∗15] and path
space filtering [KDB14, BFK18] and particularly focus on the path
resampling and world-space reuse techniques.

Resampling methods. Talbot et al. [TCE05] propose resampled
importance sampling, which allows sampling from a sub-optimal

distribution and then refines the distribution to a target distribu-
tion. Bitterli et al. [BWP∗20] combine RIS with reservoir sam-
pling [LC09] for direct illumination. Their approach draws samples
from light sources for each reservoir and reuses samples between
similar reservoirs in spatial and temporal domains. Boksansky et
al. [BJW21] propose a uniform grid structure for ReSTIR, which
allows multiple reservoirs within each voxel, leading to higher
quality than the original RIS. Rez et al. [Rez21] employ a hash
table to organize light samples in the path space and retrieve poten-
tial candidates from the table. Their method shows improvements
over ReSTIR, especially in areas with low effective sample counts.

Later, Ouyang et al. [OLK∗21] extend ReSTIR to global illu-
mination by adapting the reservoir resampling to path sampling.
Their method shows dramatic noise reduction compared to previ-
ous path sampling methods. Boissé [Boi21] applies spatial hash-
ing and reuses light samples at secondary vertices to reduce noise.
However, his method shows subtle benefits for handling indirect
lighting due to a lack of path sampling, in particular when the pri-
mary vertex is diffuse. Relying only on BSDF sampling to generate
the secondary vertices is insufficient, even if the direct lighting is
resampled at the subsequent vertex.

Compared with these approaches, we cache and reuse an entire
path or a path suffix starting from non-primary vertices, allowing
for resampling vertices at further bounces.

Lin et al. [LKB∗22] introduce a generalized RIS theory, by ex-
tending resampling to samples from an arbitrary domain. Under
this theoretical framework, their approach can handle more compli-
cated scenarios with glossy and specular materials. Our approach
can also benefit from the influential theory to reuse more complex
path samples in the world space with other powerful shift map-
pings. However, it will bring a huge overhead and deviate from our
goal – a lightweight GI approach.

Several approaches couple reservoir resampling with other GI
approaches, like dynamic diffuse global illumination (DDGI).
DDGI resampling [MMK∗21] combines ReSTIR with DDGI
[MGNM19]. They produce less noisy results with a unified resam-
pling scheme than ReSTIR GI and less bias than DDGI.

World-space reuse methods. Screen-space filtering ap-
proaches [SZR∗15] denoise the rendered results in the screen
space. Path-space filtering [KDB14] extends their work by averag-
ing path contributions in the path space, providing a more accurate
solution of dis-occlusions during temporal filtering. Path-space
filtering dramatically improves visual quality, although searching
for nearby paths is expensive. Fast path-space filtering [BFK18]
replaces the costly neighborhood searching with a single query in
a hash table, by separating a scene into cells and storing paths in a
hash map. Path-space filtering is suitable for real-time rendering
by leveraging the massively parallel structure of modern GPUs.
Inspired by their work, many approaches introduce world-space
reuse via spatial hashing, like Deng et al. [DHC∗21] and Gautron
et al. [Gau20]. In our paper, we introduce the spatial hashing idea
into path resampling.
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3. Background and motivation

At the core of global illumination is rendering equation [Kaj86]:

L(x,ωo) =
∫

Ω

Li(x,ωi)ρ(ωo,ωi)⟨cosθi⟩dωi (1)

where L is the radiance at x with direction ωo, Ω is the hemisphere
of directions around the surface normal, Li is the incoming radi-
ance, ρ is the bidirectional scattering distribution function (BSDF)
and ⟨cosθ⟩ is the cosine of the angle between the direction ωi and
the surface normal with negative values clamped to zero.

Then rendering equation can be computed using Monte Carlo
estimator, by tracing N directions ω j with the probability density
function (PDF) p(ω j):

L̂ =
1
N

N

∑
j=1

Li(x,ω j)ρ(ωo,ω j)⟨cosθ j⟩
p(ω j)

. (2)

In real-time rendering, the sample count N should be strict to
one or at most two for performance reasons. Hence, a PDF p which
closely matches the integrand is required to improve the estimation
quality.

3.1. Resampled Importance Sampling

A perfect PDF that matches the integrand is impossible. Talbot
et al. [TCE05] proposed resampled importance sampling (RIS),
which is effective in sampling complex functions. The basic idea
is sampling the complex function with a known source PDF p to
generate M samples y = y1,y2, ...,yM and then sampling the M can-
didates to get sample z using the target PDF p̂ with probability:

p(z|y) = w(z)

∑
M
i=1 w(yi)

,w(y) =
p̂(y)
p(y)

. (3)

The distribution of z matches p̂ more closely as the sample count
M increases. Introducing z in Equation 2 results in a unbiased RIS
estimator:

L̂ =
f (z)
p̂(z)

1
M

M

∑
j=1

p̂(y j)

p(y j)
, (4)

where f is short for all the terms in the integration for clarity.

Note that RIS allows using unnormalized target PDF p̂, and
avoids sampling the complex function directly.

3.2. Weighted Reservoir Sampling

The original RIS [TCE05] allows resampling a large number of
samples to get high-quality distribution. However, it requires stor-
ing all candidates before resampling, which brings heavy storage
overhead and is unsuitable for GPU. Thus, Bitterli et al. [BWP∗20]
reformulate RIS using weighted reservoir sampling [LC09] (WRS),
transforming it into a streaming algorithm. They use it for direct il-
lumination with many lights. The resampling weight W (z) for sam-
ple z is defined as:

W (z) =
1

p̂(z)M

M

∑
j=1

w j. (5)

Thus, Equation 4 can be rewritten as:

L̂ = f (z)W (z). (6)

3.3. ReSTIR GI

ReSTIR GI [OLK∗21] resamples indirect lighting paths in the
screen space. Since our method is built on top of their method, we
define some notations and briefly review their approach.

A path generated with path tracing consists of a sequence of ver-
tices in the scene, defined as x̄ = x0,x1, ...,xn, where x0 is the cam-
era point and xn is a point on the light source. The first shading
point x1 along the path is called a visible point, visible from the
camera. The second vertex x2 adjacent to the visible point along
the path is called a sample point. The sub-path from the sample
point to the light source forms a path sample.

At the core of ReSTIR GI is resample of the path samples for
the visible points, together with a spatial and temporal reusing. For
that, the path samples, as well as the spatiotemporal reservoirs, are
stored in screen-space buffers, including positions and normals for
the visible and sample points – x1, x2, n1, n2, and the outgoing
radiance L2 and PDF p for each path. During rendering, they re-
sample the path samples in the spatial and temporal reservoirs and
reconnect the visible point with the path sample.

For spatial reuse, shift mappings are needed to map paths be-
tween different integration domains. ReSTIR GI uses a method
called reconnection shift mapping by only reconnecting vertex with
high roughness along paths. This shift mapping converts the PDF
of the sample from one domain to another:

p′i(y) = p(Ti(y))
∣∣∣∣∂Ti

∂y

∣∣∣∣ , (7)

where y is a sample from originate domain Ωi, Ti is the shift map-
ping maps this sample from domain Ωi to Ω, p is the PDF weight
of mapped samples in Ω and

∣∣∣ ∂Ti
∂y

∣∣∣ is the Jacobian determinant for
reconnection shift mapping.

3.4. Motivation

ReSTIR GI resamples the path samples in the screen space, which
brings several difficulties. Firstly, the path samples are limited to
the ones starting from sample point, preventing resampling the
paths from further bounces. Secondly, the spatial coherence de-
fined in the screen space breaks for discontinuous areas (e.g., the
regions in the distant view or with large normal variation), lead-
ing to a significant decrease in resampling quality. Finally, ReSTIR
GI becomes less effective for paths with highly glossy surfaces,
due to the reconnection shift mapping. Other shift mapping func-
tions [LKB∗22] can address this issue, by introducing exhaustive
time cost. Another lightweight option is to reuse the subsequent
paths after the glossy surfaces, which could alleviate the resampling
quality degradation, although is less accurate than the introducing
shift mapping functions. Unfortunately, this lightweight option is
infeasible for ReSTIR GI due to the fact of screen-space resample.
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To tackle these issues, we introduce world-space reuse into Re-
STIR GI. This way, all the paths starting from the non-primary ver-
tices can also be resampled, allowing for more path sample candi-
dates. It also indicates that the subsequent paths after glossy sur-
faces can also be resampled. Moreover, a world-space structure can
better leverage the spatial coherence of samples in the path space.

4. World-Space ReSTIR GI

Our world-space resampling approach mainly includes three steps,
as shown in Figure 2. The path samples are generated and recorded
in a sample generation step (Section 4.1). The next, they are orga-
nized into a hash grid for query efficiency (Section 4.2). Then the
spatialtemporal resampling is performed at each visible point for
indirect illumination (Section 4.3).

4.1. Sample Generation

In the sample generation step, we perform Monte Carlo path tracing
starting from the camera and record path samples for resampling.
The main difference from ReSTIR GI is that we extend the path
samples to more bounces.

We shoot rays from the camera, which intersect with the scene,
resulting in shading points. Starting from these shading points, we
perform a regular path tracing – sample a direction at each point
with BSDF sampling, and trace the ray in the sampled direction to
get the next intersection, until reaching the light source. The ver-
tices along each sampled path with a small roughness (say, smaller
than 0.2) are called a specular vertex. We treat the first non-specular
vertex as the visible point, denoted as x1, and then we rename all
the vertices after the visible point generalized sample point, which
are a generalization of the sample points in ReSTIR GI to arbitrary
bounces.

After getting such a sampled path, we generate the path samples
for resampling. We generalize the resample from sample points to
all the generalized sample points. The path that connects a general-
ized sample point to a point on the light source is called a general-
ized path sample. For each generalized path sample starting from xi
(i>1), we record the following data: positions xi and xi+1, normals
ni and ni+1, radiance Li+1 and source PDF pi. The radiance of each
generalized path sample is computed with the next event estimation
(NEE) and MIS, while the source PDF is the BSDF. These gener-
alized path samples are stored in a screen-space buffer and will be
further organized into a hash grid later. The data structure details
are shown in Section 5.1 and in Alg. 1.

4.2. Hash Grid Construction

After generating the generalized path samples, we organize them
with a world-space hash grid for efficient query and compact stor-
age. One key question is which property should be used for the
hash key. Using the position (of the first vertex) of generalized path
samples as the hash key is simple but becomes less efficient for
generalized path samples with large normal variations. Therefore,
we propose a normal-aware hash grid construction approach, con-
sidering both the position and the normal. Furthermore, we find
that a uniform-sized hash grid decreases the resampling quality for

regions at distant view due to over-small cells. Therefore, we in-
troduce a cascaded hash grid, where the cells are dense around the
camera and get sparse when distant from the camera.

Normal-aware hash function. The position-only hashing
grid [Boi21] is constructed with an 1D hashing function H1(x)
which maps a world-space point to a hash index:

H(x) =H1(d +H1(
xx

d
+H1(

xy

d
+H1(

xz

d
)))), (8)

where x = (xx,xy,xz) is a world-space position, H1() is a hash
function defined on a given integer and d is the cell size for the
hash grid.

Based on the position-only hashing grid, we introduce our
normal-aware hash function:

H(x,n)=H1(quantized(n)+H1(d+H1(
xx

d
+H1(

xy

d
+H1(

xz

d
))))),

(9)
where quantized(n) is a quantize function on an input normal
n = (nx,ny,nz). It maps continuous coordinates on a unit sphere
to several discrete regions with unique indices:

quantized(n) = χ(nx)<< (2∗dn) | χ(ny)<< dn | χ(nz). (10)

Where χ() maps any real number between 0 and 1 to integers rang-
ing from 0 to any arbitrary normal quantized step dn, which estab-
lishes the count of discrete regions of the normal space and is set
as 2 in practice.

Cascaded hash grid. Then we construct a cascaded hash grid,
by setting the cell size d as an adaptive value. First, a continuous
world-space cell size dc is computed based on the view distance dv:

dc = dv tan(max(
fov
Rx

,
fov ·Rx

R2
y

)ds
c), (11)

where tan is the tangent function, R = (Rx,Ry) is the image res-
olution, ds

c is the projected cell size in the screen space [Boi21].
Then, we adjust dc with a minimum cell size dmin, resulting in the

adaptive cell size: d = dmin ·2
⌊log dc

dmin
⌋.

Now, we have a well-performed hash function that provides the
identical hash key for similar samples. However, the hash conflict
is inevitable as a nature property of spatial hashing. Thus, we use
the commonly-used linear probing and a second hash index as well
to avoid hash conflicts. At each hash cell, we store the indices of
the generalized path samples, where the actual data are stored in an
image buffer. This strategy is designed to optimize storage.

The implementation details and the settings of variables are
shown in Section 5.2. Thanks to our normal-aware hash function,
we can assign similar samples in the world space to a single unique
cell index, leading to a more reasonable scene separation, as shown
in Figure 3.

4.3. Spatiotemporal Path Resampling

In this section, we show how to use our world-space hash grid for
spatiotemporal resampling. The constructed hash grid can be used
for spatial resampling immediately. However, it can not benefit the
temporal resampling due to the coarse representation of the hash
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Visible points

Sample points

Light source

(a) Sample generation

ReSTIR GI

(b) Path resampling

Reused sample

Failed 
reuse

(c) Sample generation

Generalized sample points

(d) Hash grid construction

Hash grid cell Reused samples

(e) Path resampling

Ours

Figure 2: Overview of ReSTIR GI and our method. In ReSTIR GI, only sample points next to visible points can be reconnected for reuse. A
path sample starting from the visible point is recorded for resampling (a). During resampling, a path sample is queried in the screen space
by checking the similarity of the visible points (b). Our method generalizes ReSTIR GI by including more vertices along the path, which form
the generalized sample points (c). Starting from both visible points or generalized sample points, more path samples are generated, called
generalized path samples. These generalized path samples are recorded in a hash grid for efficient query (d). During resampling, generalized
path samples are resampled for each visible point, resulting in more reusing than the original ReSTIR GI. As shown in the lower right corner
of the images (marked with light purple), the visible point’s reservoir can reuse the sub-path starting at the generalized sample point, while
the reservoir fails to reuse in ReSTIR GI (e).

(a) Key without normal (b) Key with normal (c) Rendered scene

Figure 3: Hash grid visualization w/o (left) and w/ (middle) normal included in the hash key for the SPONZA scene (right). Different cells are
shown in different colors. The hash key consisting of normals separates the scene into smaller cells with both similar normal and position,
leading to a more reasonable separation.

grid. Increasing the resolution of the hash grid will resolve this is-
sue, but it will affect the spatial reuse quality. Therefore, we per-
form the screen-space temporal resampling and then apply a world-
space spatial resampling.

For temporal resampling, we follow the same way as ReSTIR
GI [OLK∗21]. For each pixel, we read the path samples directly
from the generalized path sample buffer and randomly update the
temporal reservoir with the samples, where the temporal reservoir
is located by reprojection.

Then, we perform the spatial resampling. Given the position and
normal of a visible point, we first use our normal-aware hash func-
tion to locate the hash cell, which has the indices of generalized
path samples, and get the generalized path samples from the screen
space buffers. Then, we validate the generalized path sample by
checking normal similarity and visibility. We check the normal sim-
ilarity by comparing the angle between the path sample’s normal
and the visible point’s normal with a threshold (e.g., 15◦). Any
sample that fails to meet this condition is discarded. As for the visi-
bility, we trace a ray from the visible point to confirm that the sam-

ple is visible from the visible point. For non-visible samples, the
resampling weight is set as 0. Next, we transform the resampling
weight of the generalized path sample to the visible point’s domain
using the contribution function described in Section 3.3. Finally,
we update the spatial reservoir using this sample with the trans-
formed resampling weight. After reusing all the generalized path
samples in the hash grid cell, we correct the resampling weight of
the spatial reservoir considering the contributed sample count |Z|,
similar to ReSTIR GI [OLK∗21]. The resampling details are shown
in Section 5.3.

After the spatiotemporal resampling, the indirect illumination at
the visible point is finally estimated as the product of the resam-
pling weight W (z), the cosine weight BSDF value, and the sample’s
outgoing radiance.

We provide a comparison between the world-space and screen-
space spatial resampling in Figure 4, by showing the roughly reuse
searching areas in a red block. Our approach (world-space resam-
pling) yields more appropriate reuse candidates for complex sce-
narios, considering both the world-position similarity and the nor-
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ReSTIR GI Ours

ReSTIR GI Ours

ReSTIR GI

ReSTIR GI

Ours

Ours

Figure 4: Visualization of the resampling candidate region for a
specific pixel (red dot) on the BISTRO and GALLERY scenes. The
resampled region is shown in the red block around the query pixel.
Compared to ReSTIR GI, our method considers the similarity of
position and normal, leading to a more reasonable resample region
and less noisy rendered results.

Algorithm 1: Initial Sampling

1 for each pixel q do
2 Get visible point x1 and normal n1 from G-buffer

// Find a rough visible point
3 while current visible point roughness smaller than

threshold do
4 Sample a direction and trace ray to find next point x’
5 x1→ x’
6 n1→ n’
7 end
8 Use path tracing to generate the rest generalized sample

points x2, x3, ...
9 for each generalized sample point i (i≥ 2)∈ path do

10 Store xi, ni, source PDF pi and outgoing radiance Li
during path tracing

11 end
12 for each point i (i≥ 1) ∈ path do
13 InitialSampleBuffer[q][i]←

Reservoir(xi,ni,xi+1,ni+1,Li+1,pi)
14 end
15 end

mal similarity. Although our method’s available region may be
smaller than that of ReSTIR GI due to its adaptive size, the sample
candidates within the region have higher resampling weights, indi-
cating that the samples are more effective for reuse. Furthermore,
our method also caches path samples at further bounces, which fur-
ther enriches the candidates, leading to higher rendering quality.

5. Implementation

In this section, we will show some implementation details (data
structure and algorithms) and practical choices.

5.1. Sample Generation

We keep three image-sized buffers to store sample reservoirs for
different bounces, which is set as two in practice:

• Initial sample buffer: a buffer of initial reservoirs of
generalized path samples.

• Temporal reservoir buffer: a buffer stores reservoirs
that accept samples from previous frames.

• Spatial reservoir buffer: a buffer stores reservoirs
that accept samples from neighbor reservoirs.

Algorithm 1 shows the pseudo-code of the sample generation
step. Note that although the reservoirs are stored in screen-space
buffers, their indices are stored in the hash grid to save memory
bandwidth. This indicates that these reservoirs can also be queried
by world-space positions and normals, rather than the screen space
pixels only. We also keep another screen-space buffer for glossy
surfaces, recording the accumulated BSDF value, path radiance,
and path length leading up to the visible point.

5.2. Hash Grid Construction

Hash function. We use double hashing (using two hash functions)
with two GPU-friendly hash functions, where pcg32() is our pri-
mary hash function and jenkinsHash() (a 32 bits version) is our
secondary hash function. Both functions only require a few bit op-
erations.

Hash grid data structure. The indices of the generalized path
samples are organized in the world-space hash grid. Since each
cell might have several generalized path samples, the indices of
these generalized path samples per cell are stored in a sample in-
dex buffer successively. We locate them with a cell offset index for
a cell and an in-cell index for each sample, which requires record-
ing each cell’s generalized path sample count and the cell offset
index in two other buffers. Furthermore, the secondary hash key
for each cell should be stored to identify whether the reservoirs are
located in the cell. To summarize, we have the following buffers:

• Sample index buffer: a buffer stores the index of reser-
voirs in each cell.

• Sample count buffer: a buffer stores the count of reser-
voirs in each cell.

• Cell offset buffer: a buffer stores the offset index of
cells in hash grid.

• Checksum buffer: a buffer stores the secondary hash key
for each cell.

All the buffers for the hash grid are allocated with a fixed size
corresponding to the maximum cell count, set as 3.2 M in practice.
The sample index buffer is then set to the same size as the initial
sample buffer.

submitted to Pacific Graphics (2023)
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Algorithm 2: Spatial Resampling

1 for each pixel q do
2 ReservoirRsp ← TemporalReservoirBuffer[q]
3 cellIndex← FindCell(xsp,nsp, Checksum buffer)
4 cellbegin← CellOffsetBuffer[cellIndex]
5 count← SampleCountBuffer[cellIndex]
6 increment← (count + maxIterations -1) / maxIterations
7 offset← Rand(0,increment-1)

// Z stores selected samples
8 Z←Rsp
9 for i← 0 to count−1 by increment do

10 index← cellbegin +(i+o f f set)%count
11 storageIndex← SampleIndexBuffer[index]
12 Rn← temporalReservoirBuffer[storageIndex]
13 Compute normal similarity between nsp and nn
14 if similarity is lower than threshold then
15 continue
16 Adjust p̂xn with Jacobian determinant JRn→Rsp

17 ifRn’s sample is not visible forRsp then
18 p̂xn = 0
19 Merge(Rsp,Rn, p̂xn )
20 Z← Z∪Rn

21 end
22 Bias correction through samples in Z
23 SpatialReservoirBuffer[q]←Rsp

24 end

Minimum cell size and projected cell size. The minimum cell
size is used to adjust the hash grid size, and it affects performance
significantly: a smaller size leads to insufficient samples for effec-
tive resampling. On the contrary, a bigger size causes more invalid
samples for resampling. Thus, we set the minimum cell size con-
sidering the actual scene size. We get the bounding box of the scene
and scale it with 1%. The minimum cell size is set as the minimum
scaled bounding box length. The projected cell size is another user-
defined parameter affecting the actual size. We set it to 10% of the
image resolution, which is identical to ReSTIR GI.

5.3. Resampling

Temporal resampling. We simply keep the last frame’s model,
view, and projection (MVP) matrix for temporal reprojection.
When the reprojection fails, the temporal resampling is canceled,
but the spatial resampling is still performed.

Spatial resampling. We perform spatial sampling with a maxi-
mum iteration count, set as three, following ReSTIR GI. We gener-
ate a random path sample in the first iteration, and then choose the
next samples with a fixed stride, as shown in Algorithm 2. Then,
to prevent bias caused by reusing correlated samples, we obtain
the spatial reservoir from previous frame’s spatial reservoir buffer
and retrieve neighbor reservoirs from previous frame’s temporal
buffer, likewise, we use the hash grid from the last frame. More-
over, reusing samples within the identical cell may lead to block
artifacts. To address this issue, we introduce jittering to the posi-

tion component of the hash key with a random vector proportional
to the cell size, similar to previous work [BJW21, Boi21].

Reservoir storage and memory cost. Multiple-bounce reservoirs
bring huge storage overhead. To avoid the enormous storage, we
store the reservoirs in a packed form: using half-precision float for
the outgoing radiance; compressing the position and normal in a
single float4 vector; compressing the sample count N and sample
age in a four-byte unsigned integer. As a result, only 64 bytes are
required for each reservoir. With a twice image-sized initial sam-
ple buffer, a double-buffering temporal reservoir buffer, a double-
buffering spatial reservoir buffer, and a hash structure for the cur-
rent and last frame. At a resolution of 1920×1080, the total mem-
ory cost is 933 MB, where reservoirs cost about 759 MB, and the
hash structure costs 174 MB.

6. Result

We have implemented our method inside Falcor [KCK∗22]. We
compare against path tracing (PT), ReSTIR GI [OLK∗21], ReSTIR
PT [LKB∗22], and a converged PT as references. For all these
methods, we enable NEE and MIS. Additionally, ReSTIR DI is
used for direct illumination. We use the implementation of the un-
biased version provided by Lin et al. [LKB∗22] for ReSTIR GI and
ReSTIR PT. All timings in this section are measured on a GeForce
RTX 3080 Laptop GPU. The time cost of our method includes all
the passes, where the resampling pass costs more than 70% of the
total time. We use MSE to measure the difference between each
method and the ground truth. The resolutions for all the results are
set as 1920 × 1080 resolution.

6.1. Comparison against previous work

In this section, we compare our results against the previous work
with equal time or equal spp.

In Figure 5, we compare path tracing, ReSTIR GI and our
method with roughly equal time on various scenes ranging from
small indoor scenes to large open scenes with complex lighting
and geometries. By comparison, both our method and ReSTIR
GI provide much less noise than path tracing, while our results
are less noisy than ReSTIR GI. Our approach provides a reduc-
tion ranging from 2.13× to 14.71× compared to path tracing,
which demonstrates a 16.6%∼33.1% improvement over ReSTIR
GI with only an extra 2∼ 4 ms time cost (4.41%∼ 8.36%). Thanks
to the world-space hash grid and more path sample reuse, our
method shows considerable improvements over the screen-space
approach [OLK∗21] on areas at distance or with large normal or
depth variation.

In Figure 6, we compare ReSTIR GI, our method, and ReSTIR
PT for several scenes with high glossy materials with equal sam-
pling rates. Both our method and ReSTIR PT show less noise than
ReSTIR GI, which fails for glossy materials. The main reason is
that, when choosing to perform resampling at the visible point on
the path, the screen-space buffer fails to guarantee spatial coher-
ence in path space for those paths starting from a highly glossy ver-
tex: even if two glossy vertices have the same lobe shape, their suc-
cessive vertices on the path may diverge significantly due to sam-
pling and scene complexity. On the other hand, our world-space
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Figure 5: Comparison among path tracing, ReSTIR GI and our method with roughly equal time on various kinds of scenes. The sampling
rate is set as 2 for path tracing, and set as 1 for our method and ReSTIR GI to ensure roughly equal time. Our method exhibits a 16.6% to
33.1% improvement in terms of MSE compared to ReSTIR GI at a low extra cost.
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Figure 6: Equal sampling rate comparison (1 spp) among ReSTIR GI, ReSTIR PT, and our method on the SPONZA and VEACH AJAR

scenes. Our method is able to handle glossy materials, which is difficult for ReSTIR GI. Compared to ReSTIR PT, their method can provide
the highest quality, but it is almost three times slower than our method and becomes difficult for real-time rendering. Our method trades the
lightweight or high-performance with less accuracy.

structure caches samples with similar normal and position in one
cell, ensuring path space coherence for further bounces. This makes
reconnection shift mapping still capable of achieving its effective-
ness. Regarding the time cost, our method only shows a minor
time cost, compared to ReSTIR GI, while ReSTIR PT introduces a
heavy time overhead (almost three times slower than ours). There-
fore, our method can outperform ReSTIR GI on both diffuse and
glossy materials with a little time cost. Compared to ReSTIR PT,
our method is much lightweight, with some quality degradation.

We also compare our method (biased) with biased ReSTIR GI
and biased ReSTIR PT in Figure 7. For ReSTIR GI and our method,
we disable the bias correction strategy. For ReSTIR PT, we use the
constant MIS weight (a biased MIS weight). Our method produces
less noisy results than ReSTIR GI, with only a 7% time overhead.
Compared to ReSTIR PT, our method is twice as fast at one spp
and serves as a more practical choice for real-time rendering, at the
cost of lower quality.

6.2. Converged results and parameter analysis

We analyze our method’s convergence via comparisons against the
ground truth and then analyze the effects of the main parameters.

Converged results. In Figure 8, we compare our converged results
with ground truth on several scenes. We find that our converged re-
sults are identical to the ground truth. As discussed in generalized
RIS [LKB∗22], resampled importance sampling requires general-
ized resampling MIS; otherwise, even an unbiased algorithm might
not converge to the ground-truth images. In the same way as Re-
STIR GI, our method also employs additional measures to ensure
convergence, including M-capping and sample validation (ways to
restrict the sample’s lifetime in reservoirs) [OLK∗21].

Parameter analysis. Figure 9 shows the rendering error (MSE)
as a function of the minimum cell size on several scenes. We
also provide a visual comparison of varying minimum cell sizes
in Figure 10. We find that the scale factor around 1% of scenes
shows the best convergence: a smaller size makes cells lack sample
availability and reduces resampling quality consequently; a bigger
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ReSTIR GI (1spp) Ours (1spp) ReSTIR PT (1spp) 

ReSTIR GI | 73.84ms

MSE: 0.0132 

Ours | 79.32ms

MSE: 0.0130  

ReSTIR PT | 152.41ms

MSE: 0.0126 

Reference

Figure 7: Comparison among our method (biased), biased ReSTIR
GI and biased ReSTIR PT with equal sampling rate (1 spp) on the
BISTRO scene.

size shows higher reservoir capacity, but introduces more samples
which contribute little to refine the final weight. Thus, we choose
1% of the scene bounding box as the minimum cell size.

We validate our temporal reuse in Figure 11, by comparing spa-
tiotemporal and spatial reuse only. By comparison, the temporal
reuse can greatly increase the image quality.

6.3. Limitations and Discussion

We have identified several limitations of our approach as follows.

Hash grid construction time cost. Despite hash grid construction
taking only 2∼ 4 ms, we need to rebuild it at each frame. Actually,
it is not necessary to rebuild the hash grid at such a high frequency.
Furthermore, rebuilding may eliminate samples capturing abundant
lighting. Thus, updating the hash grid rather than reconstructing
should be considered for future work.

Screen-space temporal resampling. We use a screen-space tem-
poral resampling, due to the coarse representation of the hash grid.
A finer representation of the hash grid could address this issue but
will affect the spatial reuse quality. A potential solution is a multi-
scale hash grid representation: the fine scale for temporal reuse, and
the coarse scale for spatial reuse, which is left for future work.

More complex light transport. Our approach is ineffective in re-
sampling caustic paths due to the reconnection shift mapping. In
this case, caustic paths may be reconnected to other vertices in an
identical cell, leading to artifacts, as shown in Figure 12. Besides,
our approach resamples the subsequent vertex after the glossy sur-
faces rather than resampling at glossy vertices directly.

Dynamic lighting. Like ReSTIR PT, our temporal resample is
amortized among 30 frames without any extra strategies to handle
the dynamic lighting. When the light sources in the scene have dras-
tic changes, the quality of temporal resampling degrades. ReSTIR
GI [OLK∗21] uses an SVGF-liked sample validation mechanism,
which can be employed to improve the resampling quality further.

7. Conclusion

We have presented a practical world-space path resampling ap-
proach, which allows resampling multiple bounces path samples
compared to the screen-space resampling approaches. Together
with a normal-aware hash grid construction, our method shows no-
ticeable improvements in areas with complex geometries or large
normal variations, as well as for glossy indirect lighting. Our
method outperforms ReSTIR GI up to 41.9% in terms of MSE
while only requiring a minor time cost for each frame.
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Figure 8: Comparison between our method’s converged results (accumulated with over 20,000 frames) and ground truth over several scenes.
Our converged results are identical to the references.
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Figure 9: Mean square error of our method in terms of the minimum cell size (range from 0.67% to 2.00% scaled scene bounding box size)
in a variety of scenes. The error is computed for indirect illumination only. We choose 1.0% scaled bounding box size for the minimum cell
size in practice.
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Figure 10: Rendered results with different minimum cell sizes on VEACH JAR scene. The resampling quality declines as the minimum cell
size is reduced. This occurs due to a lack of effective samples.
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Temporal + Spatial Reuse Spatial Reuse

Figure 11: Comparison between spatiotemporal reuse (left) and
spatial reuse only (right) on the SUN TEMPLE scene.
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Figure 12: Failure case. Our method shows artifacts for caustic
paths.
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