
Scratch-based Reflection Art via Differentiable Rendering

PENGFEI SHEN
∗
, Universty of Science and Technology of China, China

RUIZENG LI
∗
, Universty of Science and Technology of China, China

BEIBEI WANG
†
, Nankai University and Nanjing University of Science and Technology, China

LIGANG LIU
†
, University of Science and Technology of China, China

View #1 View #2 View #3 View #4

Fig. 1. We present a new type of 3D visual reflection art - scratch-based reflection art. Given four target images (bottom right), our method fabricates a set of

scratches (closeup patches in the bottom left) on a single metallic board to display these images when viewed from four different directions. The photos

(middle) are taken from four views respectively. To achieve that, we design analytical scratch geometric and shading models to enable differentiable rendering,

which allows computationally efficient optimization eventually. An apple pencil is put near the board as a size reference.

The 3D visual optical arts create fascinating special effects by carefully

designing interactions between objects and light sources. One of the essential

types is 3D reflection art, which aims to create reflectors that can display

different images when viewed from different directions. Existing works

produce impressive visual effects. Unfortunately, previous works discretize

the reflector surface with regular grids/facets, leading to a large parameter

space and a high optimization time cost. In this paper, we introduce a new

type of 3D reflection art - scratch-based reflection art, which allows for a more

compact parameter space, easier fabrication, and computationally efficient

optimization. To design a 3D reflection art with scratches, we formulate it as

a multi-view optimization problem and introduce differentiable rendering to

enable efficient gradient-based optimizers. For that, we propose an analytical

scratch rendering approach, together with a high-performance rendering

pipeline, allowing efficient differentiable rendering. As a consequence, we

could display multiple images on a single metallic board with only several

minutes for optimization. We demonstrate our work by showing virtual

objects and manufacturing our designed reflectors with a carving machine.

∗
Joint first authors.

†
Corresponding authors.

Authors’ addresses: Pengfei Shen, Universty of Science and Technology of China,

China, jerry_shen@mail.ustc.edu.cn; Ruizeng Li, Universty of Science and Technology

of China, China, pb17061297@mail.ustc.edu.cn; Beibei Wang, Nankai University and

Nanjing University of Science and Technology, China, beibei.wang@njust.edu.cn;

Ligang Liu, University of Science and Technology of China, China, lgliu@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2023/8-ART $15.00

https://doi.org/10.1145/3592142

CCS Concepts: • Computing methodologies→ Rendering; Reflectance
modeling.

Additional Key Words and Phrases: Scratch Rendering, differentiable render-

ing, 3D reflection art

ACM Reference Format:
Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu. 2023. Scratch-based

Reflection Art via Differentiable Rendering. ACM Trans. Graph. 42, 4 (Au-
gust 2023), 12 pages. https://doi.org/10.1145/3592142

1 INTRODUCTION

The 3D visual optical arts can produce impressive special effects by

designing interactions between objects and light sources, displaying

images in shadows, caustics, or reflectors. The design of such effects

is challenging due to the complex interactions between the lights

and objects. Therefore, computational 3D visual arts [Glasner et al.

2014; Levin et al. 2013; Mitra and Pauly 2009; Sakurai et al. 2018;

Weyrich et al. 2009; Wu et al. 2022b; Yue et al. 2014] have attracted a

great deal of attention to creating these special effects automatically.

Among various kinds of computational 3D visual arts, we focus

on the 3D reflection arts [Wu et al. 2022b]. This type of art aims to

create reflectors that can display different images when viewed from

different directions. The existing works achieve this goal by modify-

ing different properties on the surface, as shown in Figure 2. Some

works manipulate the height field by placing small mirrors [Weyrich

et al. 2009] or raised stripes [Sakurai et al. 2018; Snelgrove et al. 2013].

The others control the reflectance [Lan et al. 2013; Matusik et al.

2009], or colors [Pjanic and Hersch 2015a,b]. However, these works

discretize reflector surfaces with regular grids/facets, leading to a

huge parameter space, which raises difficulties for optimization and

fabrication. Moreover, previous works use the genetic algorithm

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-2945-0115
HTTPS://ORCID.ORG/0000-0003-1933-7319
HTTPS://ORCID.ORG/0000-0001-8943-8364
HTTPS://ORCID.ORG/0000-0003-4352-1431
https://orcid.org/0000-0002-2945-0115
https://orcid.org/0000-0003-1933-7319
https://orcid.org/0000-0001-8943-8364
https://orcid.org/0000-0003-4352-1431
https://doi.org/10.1145/3592142
https://doi.org/10.1145/3592142

2 • Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu

(GA) or complex strategies (e.g., alternative optimizing) for optimiza-

tion, yielding a high computational cost or inflexible optimization.

In this paper, we introduce a novel way to create 3D reflection

art using scratches, called scratch-based reflection art to overcome

the above issues. Compared to uniform grids/facets, much fewer

scratches are required to cover the entire reflector surface, making

the parameter space more compact. Meanwhile, scratches are much

easier and more natural to manufacture with a simple carving ma-

chine. No existing works have utilized scratches for 3D reflection

art to our best knowledge. Furthermore, we introduce differentiable

rendering into our scratch optimization problem, allowing efficient

gradient-based optimization algorithms. Since existing scratch ren-

dering methods [Velinov et al. 2018; Werner et al. 2017] are infea-

sible for this task due to their discontinuity and complexity, we

propose a novel analytical scratch rendering approach, as well as

a high-performance rendering pipeline, which serves as a core in

our scratch optimization. Consequently, we can display multiple

images on a single metallic board with only several minutes for

optimization. We demonstrate our method by showing the virtual

objects and the manufactured real ones.

The major contributions of this work are as follows.

• We propose a novel way to create 3D reflection art with

scratches, allowing more compact parameter space and easier

fabrication.

• We propose an analytical scratch rendering approach and

high-performance rendering pipeline, which are capable of

differentiable rendering.

• We introduce differentiable rendering of scratches into 3D

reflection art design, leading to flexible and computation-

efficient optimization.

2 RELATED WORK

We will briefly review previous works related to microstructure and

scratch appearance modeling, as well as 3D reflection art design.

Microstructure appearance modeling. The materials in the real

world usually show imperfections with microstructure appearances,

like car paints, metallic flakes, or brushed metal. To model such ap-

pearances, existing approaches [Yan et al. 2014] use high-resolution

normal maps to model every fine detail explicitly. Yan et al. [2014] in-

troduce patch-local normal distribution functions (P-NDFs) to com-

pute the spatially and directionally varying appearance accurately.

Their work is later improved by Yan et al. [2016] with Gaussian

elements to represent the position-normal distribution and by Yan

et al. [2018] to handle wave optics effects. More efforts have been

made to alleviate the storage cost with texture synthesis [Wang et al.

2020] or Generative Adversarial Networks (GAN) to generate NDF

images [Kuznetsov et al. 2019]. The other works focus on improving

the rendering performance with prefiltering [Atanasov et al. 2021;

Deng et al. 2022; Gamboa et al. 2018; Tan et al. 2022].

The above approaches demand high-resolution normal maps to

define the microstructures, which are challenging for optimization

due to the high degree of freedom.

Scratch appearance rendering. Raymond et al. [2016] modeled the

scratch appearance using a collection of 1D scratches. Their model

relied on pre-integration, without an individual scratch represen-

tation. Later, Werner et al. [2017] managed to render iridescent

microscale scratches, by combining with wave optics theory. Their

model can show a realistic scratch appearance overall. However,

this model is slow and impractical for optimization. Later, Velinov

et al. [2018] improved their performance by introducing an ana-

lytical formulation for a surface patch, as well as an efficient GPU

implementation, achieving a real-time frame rate, at the cost of low

quality. However, their method did not take into account the precise

boundary of scratches, which is incapable of differentiable rendering.

Moreover, both models assume triangular or rectangular-shaped

scratches, which are difficult to fabricate.

(a) Weyrich et al. [2009] (b) Sakurai et al. [2018]

Fig. 2. Previous works display images on a reflector by placing mirrors (left)

or raised strips (right).

3D Reflection Art Design. Different kinds of visual reflection arts

have been investigated, like anamorphosis [de Comite and Grisoni

2015], mirror cup and saucer art [Wu et al. 2022a], etc. Papas et

al. [2011] manufactured surfaces which produce desired caustic

images using a small collection of patches. Elek et al. [2017] re-

producted color texture in 3D printing. A detailed survey on 3D

visual reflection arts can be found in the literature [Wu et al. 2022b].

We only briefly discuss the most related ones, aiming at displaying

images on reflectors.

One way to create desired appearances is to fabricate microstruc-

tures. Weyrich et al. [2009] manufactured a mirror height field

to exhibit desired appearance with a milling machine. Snelgrove

et al. [2013] manufactured the surface with parallax barriers and

printed inks to display a single image. Recently, Sakurai et al. [2018]

fabricated microstructure reflectors with raised stripes in subdi-

vided cells to show different images under different views. Their

method uses GA for optimization and has a high computational

cost due to the large parameter space. Levin et al. [2013] used pho-

tolithography to fabricate microstructure on wafers by considering

wave optics, producing different high-resolution images. Another

work by Glasner et al. [2014] also considered wave optics and fabri-

cated reflectors with a spatial light modulator. Both methods require

extremely costly devices, making them less practical.

The other works [Pjanic and Hersch 2015a,b] modify colors on

reflectors using inks rather than microstructures, which can only

display at most two images.

Matusik et al. [2009] fabricated isotropic spatially-varying re-

flectance on a flat surface with a combination of inks. The color at

a given position is immutable, because of the isotropic bidirectional

reflectance distribution function (BRDF). Later, Lan et al. [2013]

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Scratch-based Reflection Art via Differentiable Rendering • 3

propose to print surface appearance with anisotropic reflectance

and normal variations. Different colors can be shown at the same

position from different views. The combination of normal variations

and BRDF reflectance leads to a vast parameter space. Thus, they

design an alternative optimizing strategy to decrease the time cost.

3 METHOD

3.1 Problem and formulation

Problem statement. Our work aims to carve 𝑁 scratches on a

metallic board, so different desired appearances can be displayed un-

der𝑀 view/light configurations. Each of these appearances follows

a specific image. The reason for these characterized appearances is

that the scratches change the light paths, as shown in Figure 3. We

manually specify the view/light positions.

View #1

View #2

Fig. 3. Scratches change the light paths so that scratches with specific

orientations can be seen from one view but hide from the other. For example,

the orange scratches can be seen by the left camera, while the blue scratches

are visible by the right camera.

Formulation. Assuming that the scratches are straight lines, each

scratch’s location can be represented with its two endpoints (𝑙0, 𝑙1).
Regarding the other parameters (e.g., geometric and optical proper-

ties), we will show them in the coming sections. The notations are

listed in Table 1.

The key question is how to design these scratches to generate

appearances that match the target images. The appearance of the

reflector can be simulated by rendering the scratches under a given

view/light configuration. Therefore, our problem can be formulated

as an optimization problem, predicting scratches parameters by

minimizing the difference between the multi-view rendered images

𝐼 and the target images 𝑇 :

min

S
𝐸
loss

(
{𝐼 𝑗 (S;𝑉𝑗 , 𝐿𝑗),𝑇𝑗 } 𝑗

)
, (1)

where 𝑇𝑗 is 𝑗
th
target image, 𝐼 𝑗 is the rendered result of scratches

with parameters S under view𝑉𝑗 and light 𝐿𝑗 . 𝐸loss is the loss func-

tion to measure similarities between rendered and target images.

Challenges. We hope to optimize the scratch parameters S to

achieve our goal in Eqn. (1). Previous work [Sakurai et al. 2018]

used a genetic algorithm to solve their optimization problem, lead-

ing to an enormous computation overhead (e.g., three hours). To

overcome this issue, we resort to gradient-based optimization, which

requires the gradients of all parameters. To this end, we introduce

differentiable rendering into this optimization problem. To render

scratches, we need to define the scratch shape as well as the in-

teractions between the scratches and lights (BRDF). Both models

must be differentiable and efficient to enable computationally effi-

cient optimization. Since no existing scratch rendering approaches

meet these requirements, we propose novel scratch geometric and

shading models in our paper.

3.2 Scratch geometric model

Existing approaches [Velinov et al. 2018; Werner et al. 2017] define

a scratch with a triangular or rectangular cross section, which is

simple but raises several difficulties. First, both shapes are defined by

piece-wise functions, which needmore effort to enable differentiable

rendering. Second, carving such shapes is unnatural for a carving

machine. Third, the piece-wise flat shape imposes strong restrictions

on the view/light elevation angle to form a valid path. For these

reasons, we propose a smooth function to express a scratch’s shape,

which allows for differentiable rendering and easy fabrication.

We define scratches in the UV space, which has lower dimension-

ality than the object space. For each scratch, we model its shape

with a height function parameterized in the local coordinate system.

The direction along a scratch is set as the 𝑦-axis, and the normal

of the surface is set as the 𝑧-axis, as shown in Figure 4. In the local

frame, the height and normal along the 𝑦-axis remain constant and

vary only along the 𝑥-axis. In this way, we only define the height

for the cross-section of a scratch along the 𝑥-axis (see Figure 4b):

ℎ(𝑥 ;𝑤,𝑑) = −1

2

𝑤 log

(
1 − 4𝑥2

𝑤2

)
− 𝑑. (2)

The height function is defined within (−0.5𝑤, 0.5𝑤) and goes

to positive infinity where |𝑥 | = 0.5𝑤 , so we treat 𝑤 as the scratch

width. 𝑑 denotes the scratch depth. Parameters𝑤 and 𝑑 establish a

scratch’s shape. Our height function can represent a wide range of

shapes by setting𝑤 and 𝑑 , from flat to steep, as shown in Figure 5.

Thus, our height function has a high representation ability.

d

(a) (b) (c)

xy

z

Fig. 4. (a) Each scratch is parameterized in its local coordinate frame. (b)

The main parameters to define a scratch’s shape include the depth 𝑑 and

width 𝑤. (c) Our reflection model is a two-scale model: the macroscale is

defined by the scratch height function and the microscale is defined by the

intrinsic roughness.

3.3 Scratch shading model

Now, let us define our scratch shading model or BRDF. Like other

microstructures, each pixel might cover many scratches, as shown

in Figure 6. Therefore, we need to define the scratch BRDF on a

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 • Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu

Fig. 5. Our model can represent a wide range of shapes with varying pa-

rameters.

Table 1. Notations. The referenced equations are shown in the last column.

Symbol Definition Eqn.

𝑙0, 𝑙1 two endpoints of a scratch -

ℎ(𝑥 ;𝑤,𝑑) height function of a scratch (2)

𝜔𝑖 , 𝜔𝑜 incoming/outgoing direction (3)

h half vector (3)

𝛼 intrinsic roughness (6)

𝑓
scratch

scratch BRDF (3)

𝑓
surface

surface BRDF (3)

𝐷𝑥 (h, 𝑛) NDF of a point on a scratch (6)

𝐷𝑖 (h) P-NDF by scratch 𝑖 (8)

�̂�𝑖 (h) NDF integrated on scratch 𝑖’s boundary (8)

𝐷P (h) P−NDF (3)

𝑆P pixel’s footprint size (8)

P𝑖 pixel’s footprint covered by scratch 𝑖 (8)

n(𝑥 ;𝑤) shading normal at point 𝑥 (5)

surface patch seen from a pixel, or called a pixel’s footprint, rather

than on a single point.

Similar to microstructure models [Yan et al. 2016], we mainly

focus on the normal distribution function (NDF) and leave the other

terms the same as the microfacet model. Therefore, our scratch

BRDF is defined as follows:

𝑓
scratch

(𝜔i, 𝜔o) =
𝐷P (h)𝐺 (𝜔i, 𝜔o) 𝐹 (𝜔o, h)

4|𝜔i · n| |𝜔o · n|
, (3)

q1

q2

q1

q2

Fig. 6. Each pixel of a rendered image (left) actually includes a large number

of scratches. Here, we visualize the detailed scratch distribution within four

pixels around two places.

where 𝜔𝑖 and 𝜔𝑜 are the incoming/outgoing directions, respectively.

n is the surface geometric normal, h is the half vector between the

incoming and outgoing directions, 𝐺 is the shadowing-masking

function, and 𝐹 is the Fresnel term. 𝐷P denotes the patch NDF (P-

NDF) defined on the pixel’s footprint, which aggregates NDFs of all

scratches within the pixel’s footprint:

𝐷P (h) =
∑︁
𝑖∈P

𝐷𝑖 (h), (4)

where 𝐷𝑖 is the NDF of scratch 𝑖 locating in the patch P. Before

deriving the NDF for a scratch, we first formulate NDF of a point

(𝐷𝑥) on the scratch.

Point NDF. Each point on the scratch has a normal variation,

which depends on the height function. Besides that, since the interior

of the scratch surface can not be perfectly specular, we introduce an

intrinsic roughness for scratches at the microscale (see Figure 4c).

Therefore, the NDF of a point on the scratch is a combination of the

macro-scale normal variation and microscale intrinsic roughness.

We first define the scratch normal at location 𝑥 , from the height

function (Eqn. (2)). Note that the normal n only depends on𝑤 .

n(𝑥 ;𝑤) = (−ℎ𝑥 (𝑥 ;𝑤,𝑑), 0, 1)
∥(−ℎ𝑥 (𝑥 ;𝑤,𝑑), 0, 1)∥

=

(
− 4𝑤𝑥

𝑤2 + 4𝑥2
, 0,

𝑤2 − 4𝑥2

𝑤2 + 4𝑥2

)
,

(5)

where ℎ𝑥 is the partial derivative of the height distribution function

with respect to the 𝑥 direction.

The microscale NDF is modeled with GGX [Walter et al. 2007].

Combining the two scales leads to our point NDF:

𝐷𝑥 (h, n(𝑥)) =
𝛼2𝜒+ (n(𝑥) · h)

𝜋
(
(n(𝑥) · h)2

(
𝛼2 − 1

)
+ 1

)
2
, (6)

where 𝛼 is the intrinsic roughness. Substituting the scratch normal

function Eqn. (5) into the above equation results in:

𝐷𝑥 (h, n(𝑥)) =
𝛼2

𝜋

(
(𝛼2−1) (h𝑧 (𝑤2−4𝑥2)−4h𝑥𝑤𝑥)2

(𝑤2+4𝑥2)2
+ 1

)2 . (7)

Scratch NDF. On top of the point NDF, the NDF of scratch 𝑖 cov-

ered by a surface patch is an integral of the point NDF over the

patch area:

𝐷𝑖 (h) =
1

𝑆P

∫
P𝑖

𝐷𝑥 (h, n(𝑥)) d𝑥d𝑦, (8)

where 𝑆P is the footprint size, and the integral domain P𝑖 is the
patch area intersected by scratch 𝑖 .

Eqn. (8) could be solved by point sampling but requires more

effort to be differentiable. Therefore, we derive an analytical model

by transforming the integral of the scratch area into the integral on

the boundaries, using Green’s theorem [Riley et al. 2006] and then

solve the boundary integral in an analytical manner.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Scratch-based Reflection Art via Differentiable Rendering • 5

Fig. 7. There are eight types of intersection between a footprint (blue) and

a scratch (orange). The integral boundaries are marked red in each type.

The figure on the right is the close-up view of the one framed in blue.

Based on Green’s theorem [Riley et al. 2006], the above equation

can be rewritten as:

𝐷𝑖 (h) =
1

𝑆P

∫
P𝑖

𝜕

𝜕𝑦
(𝑦 𝐷𝑥 (h, n(𝑥)))d𝑥d𝑦

= − 1

𝑆P

∮
𝜕P𝑖

𝑦 𝐷𝑥 (h, n(𝑥))d𝑥 = − 1

𝑆P
𝐷𝑖 (h),

(9)

where

∮
𝜕P𝑖

denotes the integral on the boundary of the scratch-

footprint intersection area and 𝐷𝑖 (h) is the integral on the bound-

aries (Fig. 7). Suppose there are 𝐾 segments on the boundary and

each segment is represented as 𝑦 = 𝑆 (𝑥) = 𝑎𝑘𝑥 + 𝑏𝑘 , the boundary
integral 𝐷𝑖 (h) is defined as:

𝐷𝑖 (h) =
𝑘=𝐾∑︁
𝑘=1

∫ 𝑝𝑘+1𝑥

𝑝𝑘𝑥

𝑆 (𝑥)𝐷𝑥 (h, n(𝑥))d𝑥, (10)

where 𝑝𝑘𝑥 and 𝑝𝑘+1𝑥 are the 𝑥 component of segment 𝑘’s endpoints.

Note that the segment where 𝑎𝑘 goes to infinity (in other words, 𝑥

remains a constant value) has zero contribution to the integral, but

we keep this unified representation for simplicity. The integrand

here is a linear function multiplied with Eqn. (7), indicating that it

is a rational function and its closed-form indefinite integral can be

calculated. In Figure 7, we show all the possible intersection types,

which can be handled in the same way. The details can be found in

the supplementary.

Combination with the surface BRDF. Besides the scratch BRDF, we

also need to model the appearance on the surface without scratches.

We define the final BRDF as:

𝑓 (𝜔𝑖 , 𝜔𝑜) = 𝑓
scratch

(𝜔𝑖 , 𝜔𝑜) +
(
1 − 𝑆

scratch

𝑆P

)
𝑓
surface

(𝜔𝑖 , 𝜔𝑜), (11)

where 𝑆
scratch

is the area covered with scratches within the pixel’s

footprint. We use the microfacet model with a GGX NDF for 𝑓
surface

and scale it with the non-scratch surface area.

Note that our scratch BRDF model has a closed-form formulation,

which allows for efficient evaluation and differentiable rendering.

Both of these characteristics are critical for optimization.

3.4 Inverse parameter estimation

Now, we have a scratch geometric model and a shading model.

Both models are analytical and differentiable. The next step is to

optimize scratch parameters with these models to achieve the goal

… …

…

…

Pretrained VGG-19 Features

Target Images 𝑇𝑗

Rendered Images 𝐼𝑗

Gram matrix loss 𝐸𝑔

Perceptual loss 𝐸𝑝

𝐸lossScratch parameters Compute derivativesUpdate

Differentiable
rendering

Fig. 8. We perform an optimization on the scratch parameters (endpoints,

shapes and roughness) and light intensity, using two losses: a perceptual

loss and a Gram matrix loss. Note that our parameter estimation does not

rely on any network training, and the pre-trained VGG-19 network is used

for loss evaluation only.

formulated in Eqn. (1). We will summarize all scratch parameters to

be optimized and then present our loss function.

Optimized parameters. The complete parameters to define scratches

include two endpoints for the location, the width and depth for the

scratch shape, and the intrinsic roughness in the BRDF: (𝑙0, 𝑙1,𝑤, 𝑑, 𝛼).
The light intensity is optimized as well. Light positions can be opti-

mized, but we fix them and camera positions for simplicity.

Loss function. We perform a differentiable rendering of our con-

figurations (scratches, light, and view). To measure the difference

between the rendered and target images, we need to design an ap-

propriate loss function suitable for images of scratches. Since the

scratch appearance is high-frequency, pixel-wise loss functions lead

to an over-blur appearance (see Figure 17). Thus, we introduce a

perceptual loss and a Gram matrix loss [Gatys et al. 2015].

Inspired by Chizhov et al. [2022], we use halftoningmetrics, which

express the perceptual loss as a convolution of the error image with

a kernel 𝑔 to approximate the human visual system. The perceptual

loss between target images and rendered images is defined as

𝐸𝑝 =
∑︁
𝑗

| |𝑔 ∗ (𝐼 𝑗 −𝑇𝑗) | |22, (12)

where the kernel 𝑔 is low-pass, set as a 3 × 3 Gaussian kernel.

Then, we introduce a Grammatrix loss with a pre-trained VGG-19

network to represent an image’s features. The Gram matrix loss 𝐸𝑔
is defined as sum of the squared distances between features of the

rendered images and the target images:

𝐸𝑔 =
∑︁
𝑗

| |Gram(𝐼 𝑗) − Gram(𝑇𝑗) | |22 . (13)

Our final loss function includes the above components:

𝐸
loss

= _𝑝𝐸𝑝 + _𝑔𝐸𝑔, (14)

where _𝑃 and _𝑔 denote weights of loss terms respectively. We

set _𝑝 = 1 and _𝑔 = 0.01. We find that 𝐸𝑝 makes the scratch’s

characteristics (sharp boundaries) more clear and 𝐸𝑔 removes some

scratch outliers. This joint loss will drive the back-propagation

to optimize the predicted parameters. The optimization process is

shown in Figure 8.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 • Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu

Fig. 9. Starting from an initialized scratch buffer described by scratch param-

eters, we build a scratch BVH inOptiX and shoot rays to find the intersecting

scratches. Then, we load all the pixel-scratch pairs into Dr.Jit as a buffer,

and evaluate the BRDF by accumulating the contribution of each scratch,

resulting in a rendered image. Then a joint loss is computed between the

rendered and target images.

3.5 High-performance optimization pipeline

The optimization time cost highly depends on the rendering cost,

where the critical point is searching the scratches covered by the

pixel’s footprint. One typical way is treating each scratch as a curve,

building a bounding volume hierarchy (BVH), and traversing this

hierarchy to quickly locate the covered scratches by a pixel. Un-

fortunately, none of the existing high-performance differentiable

renderers (e.g., diffrast [Laine et al. 2020]) support curves. Therefore,

we design a hybrid framework by combining OptiX [Parker et al.

2013] and Dr.Jit [Jakob et al. 2022].

In our framework (Figure 9), we use OptiX for efficient scratch

geometry intersection. This way, we can benefit from the modern

graphics hardware’s ray tracing cores on the computational-heavy

scratch searching task. Then, we evaluate the BRDF with the found

scratches to generate rendered images in Dr.Jit. Later, the loss

is also computed in Dr.Jit, which drives the back-propagation to

optimize scratch parameters. Thanks to our framework, a five-view

optimization on 80,000 scratches takes 4 minutes only.

4 IMPLEMENTATION DETAILS

In this section, we provide the implementation details and then

show the manufacturing settings.

4.1 Optimization pipeline

Starting from a set of scratches, we represent each one with a curve

primitive in OptiX and organize the scratches with the built-in BVH.

To make the built-in curve intersection module more effective, we

dither the curves along the 𝑧-axis to avoid overlapping. During

rendering, we shoot a ray from each footprint’s center along the −𝑧
direction and traverse the BVH to find all the intersecting scratches.

Note that we set each scratch’s width as the maximum radius of

footprints so that the searching ray does not miss any intersecting

scratches. The modified width is used for traversal only. For this step,

we use the plain OptiX interface instead of the one integrated in

Dr.Jit because it does not support curve intersection yet. Moreover,

we use a queue data structure to collect the intersection pairs, which

is not convenient inDr.Jit. All the found scratch data are transferred

to Dr.Jit for further BRDF evaluation.

The following steps are done in Dr.Jit (C++). We gather the con-

tribution of each scratch, computed by Eqn. (9). Here, we evaluate

the NDF value for each pixel-scratch pair and atomically add them

to each pixel. Such an operation is named scatter reduce in Dr.Jit,

whose auto differentiation is supported. Finally, we compute the

final BRDF value by Eqn. (11) and set the pixel color as the product

of the BRDF value, the light intensity, and the cosine term. Note that

we only use point or directional light sources in our optimization,

which do not need Monte Carlo sampling.

We perform a Gamma correction for each rendered image since

the target images have low dynamic range. Then we compute the

joint loss between the rendered and target images, where the VGG-

19 network for the Gram matrix loss is called with LibTorch. We use

the Adam optimizer with a learning rate of 0.001 for 100 iterations.

After the optimization, we discard the scratches with a low con-

tribution to the rendered results, since we find that they have little

influence on the loss function, as shown in Figure 21. In this way,

many lines can be discarded, reducing manufacturing overhead.

View/light setup. Since we do not optimize the view and light

positions in our implementation, we provide some tips on their

setup. Assuming the light is placed with the elevation angle (the

angle between the surface normal and light direction) set as \ , the

elevation for all views should also be close to \ . Then, the 𝑗 th view’s

azimuth angle is set as
360𝑗
𝑀

, where𝑀 is the view count.

4.2 Manufacture setup

We use smooth aluminum boards as our reflectors, which are square-

shapedwith an edge length of 30 centimeters. Although perfectly flat

metallic boards are desired, they still have some height variations,

from 0.1 to 0.2 mm.

Wemanufacture the reflectors with a home-built carving machine

(Figure 10). The machine is driven by stepper motors and leadscrews.

The relocating precision is up to 5`m. One critical component of

the carving machining is a soft carving head, which consists of a

sphere-headed milling cutter and a self-designed spring holder. The

purpose of the spring holder is to allow a 1 to 2 mm offset along the

vertical direction to overcome the height variations on the metallic

boards so that the milling cutter can reach the reflector surface.

The moving speed of the carving head is 1.5cm/s on average, and

the average carving speed is one scratch per second. Thus, carving

one board takes 5 to 10 hours, depending on the scratch count.

5 RESULTS

We first show rendered results of our forward model and analyze

the main parameters. Next, we exhibit our designed reflectors with

both virtual rendered results and manufactured ones. Lastly, we

analyze the impacts of some essential components. Unless otherwise

specified, we use the following settings: 𝛼 is set as 0.04.𝑤 and 𝑑 are

set as 1 × 10
−4
. All timings in this section are measured on a single

NVIDIA 3090 GPU and an AMD Ryzen 9 5950X CPU with 16 cores

and 32 threads.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Scratch-based Reflection Art via Differentiable Rendering • 7

Fig. 10. (a) Our carving machine is driven by stepper motors and leadscrews.

(b) Close-up view of the carving head. (c) The milling cutter is supported by

a spring, to provide stable stress when carving.

Fig. 11. Comparison between our scratch model and Werner et al. [2017]

on two scenes. Our method produces similar scratch appearance (without

considering the colors caused by wave optics) as Werner et al. [2017], with

much less time cost, about 400× faster.

(a) random (b) horizontally-brushed (c) vertically-brushed

Fig. 12. Our forward scratch model can express different types of scratch

distributions by setting scratches’ endpoints, including (a) random, (b)

horizontally-brushed, and (c) vertically-brushed scratches.

5.1 Results of our forward model

Comparison with previous works. We compare our forward model

against Werner et al. [2017] on two different scenes. The imple-

mentation of Werner et al. [2017] is from the author’s website. Our

model can produce similar scratch shapes, while our BRDF evalua-

tion speed is 400 times faster than theirs and purely analytical. The

purpose of this comparison is that our scratch rendering method

can produce a high-quality scratch appearance as the offline render-

ing method. Note that the rendered image of Werner et al. [2017]

shows colored scratches since their model is based on wave optics.

However, we do not consider wave optics, since fabricating with

wave optical effects controlled demands expensive devices.

0.04

0.01 0.09

Fig. 13. Rendered results with varying parameters on the BentQuad scene.

Our scratch shadingmodel can express a broad range of scratch appearances.

Note that unspecified parameters are set the same as the top row.

Parameter analysis. In Figure 12, we show three types of scratches

on a PlanarBoard scene under an environment map, including

random, horizontally-brushed, and vertically-brushed distributions.

These different distributions are defined by setting scratches’ end-

points. In Figure 13, we provide rendered results of a BentQuad

scene under a point light and environment map with varying param-

eters, including the intrinsic roughness, width, and scratch count. By

setting different scratch parameters, our scratch BRDF can express

a variety of scratch appearances.

5.2 Results of our inverse model

Quality validation. In Figure 14, we show three-view rendered

results of our inverse model on four examples with 60,000 scratches.

For each example, we set three target images as inputs and then

optimize scratch and light parameters to match these target images.

As a result, three images made of scratches are displayed under

different view/light settings on a single same planar board. These

rendered images have a good agreement with the target images. It

demonstrates the effectiveness of our inverse model.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 • Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu
Ex

am
pl

e
#1

Ex
am

pl
e

#2
Ex

am
pl

e
#3

Ex
am

pl
e

#4

View #1 View #2 View #3

Fig. 14. Four examples of three-view optimization. Each row shows the target and rendered images for three views. Our rendered images have great agreement

with the target images. The scratch count is set as 60,000. The black and white dots on the blue circle represent the settings of the view/light, respectively.

Ex
am

pl
e

#1
Ex

am
pl

e
#2

TargetIteration #0 Iteration #3 Iteration #10 Iteration #30 Iteration #100 Per-view Loss

Fig. 15. The rendered results during optimization (#0, #3, #10, #30 and #100) on two examples. We also show the per-view loss as a function of iterations for

these two examples. The scratch count is 40,000. An animated version, including all optimized views, can be seen in the supplemental video.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Scratch-based Reflection Art via Differentiable Rendering • 9

Fig. 16. We design 3D scratch-based reflection arts with optimization and manufacture them on metallic boards using a carving machine (Figure 10). Here, we

show photos of eight manufactured metallic boards with different view settings. The views for a single board are marked in a blue quad.

In Figure 15, we show the rendered results during optimization

(with iteration #0, #3, #10, #30 and #100) on two examples. Starting

from an initial state (𝛼 = 0.04, 𝑤 = 2.5 × 10
−4
, 𝑑 = 1.28 × 10

−4
,

randomly-distributed endpoints), the rendered image consisting of

scratches approaches the target image with more iterations and

almost matches the target state with 100 iterations. An animated

version, including all optimized views, can be seen in the supple-

mental video. Note that this optimization costs 100 seconds. We also

provide the loss curves for the given view over varying iterations,

which converge smoothly.

We also manufacture our design with a simple setup (Section 4.1)

and produce many pieces of 3D scratch reflection art. Since we

cannot control the intrinsic roughness when manufacturing, we fix

𝛼 to be 0.04 during optimization. In Figure 16, we show the photos

of eight metallic boards designed with different views (two boards

with two views, four boards with three views, and two boards with

four views).

In Figure 18, we show the rendered images and photos of a manu-

factured reflector under non-optimal view/light settings, by rotating

or zooming in the camera. As expected, the rendered image and the

manufactured reflector no longer match the target image.

Ablation study. We validate the influence of each component in

the optimization, including the perceptual loss and the Gram matrix

loss. We compare the optimized results with the squared 𝐿2 loss,

the perceptual loss 𝐸𝑝 only, and our joint loss. The squared 𝐿2 loss

produces an over-blur appearance, where the scratch characteristic

is less obvious. Introducing the perceptual loss makes the scratches

more visible. The reason is that the per-pixel nature of 𝐿1 and 𝐿2
losses tends to smoothen the high-frequency features of scratches,

leading to an over-blur appearance. On the contrary, the perceptual

loss can focus more on the overall luminance distribution by using

low-pass kernels. However, some outliers are noticeable with 𝐸𝑝
only. The Gram matrix loss removes these outliers, making the

results more faithful and matching the target images better.

We show the influence of intrinsic roughness on our optimization

quality in Figure 19. We compare the optimized results w/ and w/o

intrinsic roughness. We set the intrinsic roughness as a low value

(𝛼 = 4 × 10
−4
) and treat it as pure-specular, since it produces a

similar result but avoids singularity. By comparison, we find that

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 • Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu
Ex

am
pl

e
#2

Ex
am

pl
e

#1

Target

Fig. 17. The impact of each component in our loss function, by comparing squared 𝐿2, our perceptual loss and our joint loss. We show two examples of

three-view optimization. In all the results, we optimize 40,000 scratches with 100 iterations. As shown in the insets, the squared 𝐿2 loss leads to a blurry

appearance, and the perceptual loss 𝐸𝑝 makes the scratches more clear but shows some outliers, which will be removed by introducing the Gram matrix loss

𝐸𝑔 .

R
en

de
re

d
M

an
uf

ac
tu

re
d

Optimal Rotate camera Zoom in

Fig. 18. The rendered and manufactured results using non-optimal settings

by rotating the camera 20° (middle) and zooming in the camera (rightmost).

As expected, the rendered results under these settings do not match the

target images. The scratch count is set as 60,000. The black and white dots

on the blue circle represent the settings of the view/light, respectively.

the specular scratch material leads to an over-dark appearance while

introducing the intrinsic roughness overcomes this issue.

We also show the impact of scratch representation in Figure 20

and the scratch discarding strategy in Figure 21. We compare our

two-endpoint representation against the midpoint+direction+length

representation. Our two-endpoint representation matches the tar-

get image better, since optimizing endpoints makes scratches move

more freely and quickly. In Figure 21, we show that our discard-

ing strategy helps remove about 26% of scratches, reducing the

manufacturing overhead without any quality degradation.

Target Pure specular With roughness

Fig. 19. The impact of intrinsic roughness on the optimization result. With-

out using intrinsic roughness (b), the optimized result is far from the target

image. The scratch count is set as 20,000.

Target Two endpointsMidpoint +
direction + length

Fig. 20. Comparison between different straight scratch representations:

(b) midpoint + direction + length and (c) two endpoints (our choice). Our

choice has a better agreement with the target image. This is a single-view

optimization of 20,000 scratches with 200 iterations.

5.3 Discussion and limitations

Expressiveness of our geometric and shading models. Our scratch
BRDF encodes the single-bounce interactions between light and sur-

faces, similar to most microstructure models. But this simplification

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Scratch-based Reflection Art via Differentiable Rendering • 11

Target

Ex
am

pl
e

#1
Ex

am
pl

e
#2

All scratches Aer discarding

Fig. 21. The influence of scratch discarding strategy, by comparing between

the results with all the scratches (60,000) (b) and after discarding (43,884) (c).

About 26% of scratches are discarded, while the results are almost identical.

indeed introduces an energy loss. Thanks to our intrinsic roughness,

the rendered results match the manufactured scratch appearances.

Conflicts among different views. In theory, our algorithm does not

have a limited view count as long as the roughness of scratch can

be low. In this case, each scratch only affects the current view with-

out introducing ghosting artifacts in other views. However, in our

experiments, we notice that an image pattern specified for one view

might also be seen by another, caused by the conflicts of scratches.

We tried to perform the decoupled (per-view) optimization, but it

did not show any benefits. Since our work aims to introduce dif-

ferentiable rendering for scratch-based reflector design, we did not

handle conflicts with extra effort and leave this improvement for

future work.

Advanced manufacturing machines. Since scratch is a simple fab-

ricating element, we can create many interesting scratch reflectors

even with a simple manufacturing machine. More professional ma-

chines could improve manufacturing quality since our optimization

model is not specific to the current manufacturing setup.

Difference from hatching. Hatching [Philbrick and Kaplan 2019;

Praun et al. 2001] is a classical art form, which creates flexible,

simple patterns using parallel curves. Our work might look similar

to hatching, but they are essentially different. At the core of our work

is modifying the microstructure of the surface to create multiple

desired patterns. Differently, hatching techniques form the patterns

by using the curves’ tone, density, and pattern.

UVmapping distortion. Wedo not consider the curvature and treat

the footprint as locally flat, following most of the microstructure-

based rendering models in the rendering domain. We do not explic-

itly handle the UV-to-world distortion and did not notice any arti-

facts as long as the parameterization has good angle/area-preserving

properties.

Optimizing scratch count. We do not optimize the number of

scratches for now, set as 40,000-80,000 in practice. Since optimizing

a discrete value is not trivial, we leave it for future work.

6 CONCLUSION

In this paper, we have presented a new type of 3D visual reflection

art: scratch-based reflection art, where different images made of

scratches are exhibited under different view/light conditions. The

scratch element allows a more compact parameter space and easier

fabrication. Then, we formulate the design of scratch art as an

optimization problem and introduce differentiable rendering to solve

this problem. Thanks to our novel analytical scratch geometric and

shading models, together with the high-performance rendering

pipeline, our optimization has a low computation cost, and each

view greatly agrees with the target image. We further fabricate our

designed reflectors with a simple carving machine to demonstrate

the usefulness of the proposed method.

To our best knowledge, it is the first time that a complex shape

(in UV space) consisting of many curves and the appearance are

optimized simultaneously. It is a challenging task since the geomet-

ric model and scratch BRDF must be differentiable and have high

performance. We hope that our work will inspire many applications,

like hair reconstruction. Although we focus on scratch-based re-

flection art in our paper, our framework is capable of optimizing

other elements with a well-designed geometric model and BRDF.

We are also interested in designing scratched-based reflection art on

non-planar objects, which needs more consideration on the macro

geometry.

ACKNOWLEDGMENTS

We thank the reviewers for the valuable comments. This work is sup-

ported by theNational Key R&DProgram of China (2022YFB3303400)

and the National Natural Science Foundation of China under grant

No. 62025207 and 62172220.

REFERENCES

Asen Atanasov, Alexander Wilkie, Vladimir Koylazov, and Jaroslav Křivánek. 2021. A

Multiscale Microfacet Model Based on Inverse Bin Mapping. Computer Graphics
Forum 40, 2 (2021), 103–113.

Vassillen Chizhov, Iliyan Georgiev, Karol Myszkowski, and Gurprit Singh. 2022. Per-

ceptual Error Optimization for Monte Carlo Rendering. ACM Trans. Graph. 41, 3,
Article 26 (mar 2022), 17 pages.

Francesco de Comite and Laurent Grisoni. 2015. Numerical Anamorphosis: An Artistic

Exploration. In SIGGRAPH ASIA 2015 Art Papers (Kobe, Japan) (SA ’15). Association
for Computing Machinery, New York, NY, USA, Article 1, 7 pages.

Hong Deng, Yang Liu, Beibei Wang, Jian Yang, Lei Ma, Nicolas Holzschuch, and Ling-Qi

Yan. 2022. Constant-Cost Spatio-Angular Prefiltering of Glinty Appearance Using

Tensor Decomposition. ACM Transactions on Graphics 41, 2 (2022), 22:1–22:17.
Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel,

Alexander Wilkie, and Jaroslav Křivánek. 2017. Scattering-aware Texture Reproduc-

tion for 3D Printing. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)
36, 6 (2017), 241:1–241:15.

Luis E. Gamboa, Jean-Philippe Guertin, and Derek Nowrouzezahrai. 2018. Scalable

Appearance Filtering for Complex Lighting Effects. ACM Trans. Graph. 37, 6, Article
277 (dec 2018), 13 pages.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. A Neural Algorithm of

Artistic Style. CoRR abs/1508.06576 (2015). arXiv:1508.06576

Daniel Glasner, Todd Zickler, and Anat Levin. 2014. A Reflectance Display. ACM Trans.
Graph. 33, 4, Article 61 (jul 2014), 12 pages.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. DR.JIT: A

Just-in-Time Compiler for Differentiable Rendering. ACM Trans. Graph. 41, 4, Article
124 (jul 2022), 19 pages.

Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter,

Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning

Generative Models for Rendering Specular Microgeometry. ACM Trans. Graph. 38,
6, Article 225 (nov 2019), 14 pages.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo

Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://arxiv.org/abs/1508.06576

12 • Pengfei Shen, Ruizeng Li, Beibei Wang, and Ligang Liu

CoRR abs/2011.03277 (2020).

Yanxiang Lan, Yue Dong, Fabio Pellacini, and Xin Tong. 2013. Bi-Scale Appearance

Fabrication. ACM Trans. Graph. 32, 4, Article 145 (jul 2013), 12 pages.
Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wojciech

Matusik, and Todd Zickler. 2013. Fabricating BRDFs at High Spatial Resolution

Using Wave Optics. ACM Trans. Graph. 32, 4, Article 144 (jul 2013), 14 pages.
Wojciech Matusik, Boris Ajdin, Jinwei Gu, Jason Lawrence, Hendrik P. A. Lensch, Fabio

Pellacini, and Szymon Rusinkiewicz. 2009. Printing Spatially-Varying Reflectance.

ACM Trans. Graph. 28, 5 (dec 2009), 1–9.
Niloy J. Mitra and Mark Pauly. 2009. Shadow art. ACM Trans. Graph. 28, 5 (Dec. 2009),

1–7.

Marios Papas, Wojciech Jarosz, Wenzel Jakob, Szymon Rusinkiewicz, Wojciech Matusik,

and TimWeyrich. 2011. Goal-based Caustics. Computer Graphics Forum (Proceedings
of Eurographics) 30, 2 (June 2011), 503–511. https://doi.org/10/cqjmhv

Steven G. Parker, Heiko Friedrich, David Luebke, Keith Morley, James Bigler, Jared

Hoberock, David McAllister, Austin Robison, Andreas Dietrich, Greg Humphreys,

Morgan McGuire, and Martin Stich. 2013. GPU Ray Tracing. Commun. ACM 56, 5

(may 2013), 93–101.

Greg Philbrick and Craig S. Kaplan. 2019. Defining Hatching in Art. In ACM/EG
Expressive Symposium, Craig S. Kaplan, Angus Forbes, and Stephen DiVerdi (Eds.).

The Eurographics Association.

Petar Pjanic and Roger D. Hersch. 2015a. Color Changing Effects with Anisotropic

Halftone Prints on Metal. ACM Trans. Graph. 34, 6, Article 167 (nov 2015), 12 pages.
Petar Pjanic and Roger D. Hersch. 2015b. Color Imaging and Pattern Hiding on a

Metallic Substrate. ACM Trans. Graph. 34, 4, Article 130 (jul 2015), 10 pages.
Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. 2001. Real-Time

Hatching. In Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 581.

Boris Raymond, Gaël Guennebaud, and Pascal Barla. 2016. Multi-Scale Rendering of

Scratched Materials Using a Structured SV-BRDF Model. ACM Trans. Graph. 35, 4,
Article 57 (jul 2016), 11 pages.

K. F. Riley, M. P. Hobson, and S. J. Bence. 2006. Mathematical Methods for Physics and
Engineering: A Comprehensive Guide (3 ed.). Cambridge University Press.

Kaisei Sakurai, Yoshinori Dobashi, Kei Iwasaki, and Tomoyuki Nishita. 2018. Fabricating

Reflectors for Displaying Multiple Images. ACM Trans. Graph. 37, 4, Article 158 (jul
2018), 10 pages.

Xavier Snelgrove, Thiago Pereira, Wojciech Matusik, and Marc Alexa. 2013. Special

Section on Advanced Displays: ParallaxWalls: Light Fields fromOcclusion onHeight

Fields. Comput. Graph. 37, 8 (dec 2013), 974–982.
Haowen Tan, Junqiu Zhu, Yanning Xu, Xiangxu Meng, Lu Wang, and Ling-Qi Yan.

2022. Real-Time Microstructure Rendering with MIP-Mapped Normal Map Samples.

Computer Graphics Forum 41, 1 (2022), 495–506.

Z. Velinov, S. Werner, and M. B. Hullin. 2018. Real-Time Rendering of Wave-Optical

Effects on Scratched Surfaces. Computer Graphics Forum 37, 2 (2018), 123–134.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.

Microfacet Models for Refraction through Rough Surfaces. In Proceedings of the
18th Eurographics Conference on Rendering Techniques (Grenoble, France) (EGSR’07).
Eurographics Association, Goslar, DEU, 195–206.

Beibei Wang, Miloš Hašan, Nicolas Holzschuch, and Ling-Qi Yan. 2020. Example-Based

Microstructure Rendering with Constant Storage. ACM Trans. Graph. 39, 5, Article
162 (aug 2020), 12 pages.

SebastianWerner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch

iridescence: wave-optical rendering of diffractive surface structure. ACM Transac-
tions on Graphics 36, 6 (Nov. 2017), 1–14.

Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fab-

ricating Microgeometry for Custom Surface Reflectance. In ACM SIGGRAPH 2009
Papers (New Orleans, Louisiana) (SIGGRAPH ’09). ACM, Article 32, 6 pages.

Kang Wu, Renjie Chen, Xiao-Ming Fu, and Ligang Liu. 2022a. Computational Mirror

Cup and Saucer Art. ACM Trans. Graph. 41, 5, Article 174 (jul 2022), 15 pages.
Kang Wu, Xiao-Ming Fu, Renjie Chen, and Ligang Liu. 2022b. Survey on computational

3D visual optical art design. Visual Computing for Industry, Biomedicine, and Art 5,
1 (Dec. 2022), 31.

Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi

Ramamoorthi. 2014. Rendering Glints on High-Resolution Normal-Mapped Specular

Surfaces. ACM Trans. Graph. 33, 4, Article 116 (jul 2014), 9 pages.
Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-

Normal Distributions for Efficient Rendering of Specular Microstructure. ACM
Trans. Graph. 35, 4, Article 56 (jul 2016), 9 pages.

Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018.

Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph. 37, 4,
Article 75 (jul 2018), 10 pages.

Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita.

2014. Poisson-Based Continuous Surface Generation for Goal-Based Caustics. ACM
Trans. Graph. 33, 3 (May 2014), 1–7.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://doi.org/10/cqjmhv

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem and formulation
	3.2 Scratch geometric model
	3.3 Scratch shading model
	3.4 Inverse parameter estimation
	3.5 High-performance optimization pipeline

	4 Implementation details
	4.1 Optimization pipeline
	4.2 Manufacture setup

	5 Results
	5.1 Results of our forward model
	5.2 Results of our inverse model
	5.3 Discussion and limitations

	6 Conclusion
	Acknowledgments
	References

