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1 FULL SPHERICAL SHADOWING-MASKING
FUNCTION

In this section, we provide proofs and analysis for our height-
uncorrelated and height-correlated shadowing-masking functions.

1.1 Height-uncorrelated shadowing-masking function
As illustrated in Fig. 1, in the upper hemisphere, the projected area
of microfacets towards direction 𝜔 can be written in the integral
form as

projected area = 𝜔 ·𝜔𝑔 =

∫
Ω+

𝐺1 (𝜔,𝜔𝑚)⟨𝜔,𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚, (1)

where 𝐺1 determines whether a microfacet will contribute to the
projected area. And two possible non-contributing cases are (1)
locally, a microfacet has a backward orientation w.r.t. the given
direction 𝜔 , and (2) distantly, a microfacet will be occluded by other
microfacets regardless of its own orientation 𝜔𝑚 .
Using the local / distant separated form of 𝐺1 and taking advan-

tage of the distant term 𝐺dist
1 ’s independence of any microfacet’s

normal, Eqn. 1 can be solved [Heitz et al. 2016] in the following
form:

𝐺dist
1 (𝜔) = 1

1 + Λ(𝜔) , (2)

where Λ is computed from the normal distribution function by
integrating, as described by Smith [1967].

However, when the direction of interest 𝜔 is from below the sur-
face, Eqn. 1 does not hold anymore, since 𝜔 · 𝜔𝑔 will be negative.
Our first goal is to extend Eqn. 1 to handle this case. This is done
by replacing the projected area with |𝜔 · 𝜔𝑔 |, so the projected area
is always positive and is physically correct no matter which direc-
tion of interest 𝜔 is provided. This leads to our spherical distant
shadowing / masking term:

𝐺dist
1 (𝜔) =

���� 1
1 + Λ(𝜔)

���� = {
1/(1 + Λ(𝜔)), if 𝜔 · 𝜔𝑔 > 0,
−1/(1 + Λ(𝜔)), if 𝜔 · 𝜔𝑔 ≤ 0, (3)

In Fig. 2, we validate the correctness of Eqn. 3, by comparing with
the numerical solution of the integral form of𝐺dist

1 (𝜔) derived from
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our extended spherical form of Eqn. 1:

𝐺dist
1 (𝜔) =

|𝜔 · 𝜔𝑔 |∫
Ω± 𝐺

local
1 (𝜔,𝜔𝑚)⟨𝜔,𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚

. (4)

As expected, the two solutions match very well. The curves for other
configurations (other NDFs, like Beckmann or other roughness) also
match well.
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Fig. 1. For both 𝜔 from above the macrosurface (left) or from below the
macrosurface (right), the blue area represents the projected area of micro-
facets which are not back-facing, without considering shadowing, and the
green area represents the projected area considering shadowing, thus𝐺dist

1
is the ratio between the areas of blue and green.

One important and interesting observation, is that when𝜔 is from
below the macrosurface, the value of 𝐺dist

1 could be greater than
1. This observation can be strictly validated by re-looking at Fig. 1.
As illustrated, the entire shadowing / masking term 𝐺1 gives the
projected area, marked as green, while if we ignore the shadowing
between microfacets, i.e., project a microfacet as long as it’s not
back-facing, we will end up with the blue area, predicted only by
𝐺 local
1 . By its mathematical definition,𝐺dist

1 is the ratio between the
areas of blue and green.
When projecting upwards, since there will never be holes on a

surface, the blue area is always guaranteed to be not smaller than the
green area. Therefore, the distant shadowing / masking term only
performs pruning in this case. However, when projected downwards,
very few microfacets are front-facing w.r.t. 𝜔 , and therefore cannot
pass the local test. This results in much smaller blue area. In this
case, the 𝐺dist

1 term should be greater than 1.

1.2 Height-correlated shadowing-masking function
As shown in Ross et al. [2005], the height-correlated shadowing-
masking function for reflection is:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

, (5)
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Fig. 2. We validate our spherical distant shadowing / masking term𝐺dist
1 (𝜔)

computed with our Eqn. 3 against the numerical solution of Eqn. 6.𝐺dist
1 (𝜔)

is visualized logarithmically as a function of the angle 𝜃 between 𝜔 and 𝜔𝑔 .
NDF: GGX model with 𝛼 = 1.0.

where both 𝜔𝑖 and 𝜔𝑜 are above the macrosurface.
To extend Eqn. 5 to the full-spherical domain, we first derive the

integral form of 𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) by :

1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

=

∫
Ω+ ⟨𝜔𝑖 , 𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚

𝜔𝑖 · 𝜔𝑔
+
∫
Ω+ ⟨−𝜔𝑜 , 𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚

𝜔𝑜 · 𝜔𝑔

=

∫
Ω+ 𝐷 (𝜔𝑚)

[
⟨𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔 ) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔 )

]
d𝜔𝑚

(𝜔𝑖 · 𝜔𝑔 ) (𝜔𝑜 · 𝜔𝑔 )
,

(6)
1

1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

=
(𝜔𝑖 · 𝜔𝑔 ) (𝜔𝑜 · 𝜔𝑔 )∫

Ω+ 𝐷 (𝜔𝑚)
[
⟨𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔 ) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔 )

]
d𝜔𝑚

(7)

where 𝜔𝑖 and 𝜔𝑜 are still above the macrosurface.

(a) (b) (c)

Fig. 3. There are only three cases in the reflection case: (a) both the in-
coming and outgoing directions point to the the upper hemisphere of the
macrosurface; (b) only the incoming direction points to the the upper hemi-
sphere of the macrosurface; (c) only the outgoing direction points to the the
upper hemisphere of the macrosurface.

One importance observation is that only one of the directions
could be below the macrosurface in the reflection case. As shown
in Fig. 3, since the microfacet is a single-sided facet, and the normal
of the front-side of the microfacet will always point to the upper

hemisphere of the macrosurface. When both the incoming and the
outgoing directions are below the macrosurface, the half vector or
the microsurface normal is also below the macrosurface. This will
conflict with the previous claim.

Since only one of the directions could be below the macrosurface,
we assume it’s the incoming direction for simplicity. Starting from
Eqn. 7, we have:∫

Ω+
𝐷 (𝜔𝑚)

[
⟨𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔 ) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔 )

]
d𝜔𝑚

= (1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )) (𝜔𝑖 · 𝜔𝑔 ) (𝜔𝑜 · 𝜔𝑔 ) . (8)

If the incoming direction is below the macrosurface, and we denote
it as −𝜔𝑖 , then we have:∫

Ω+
𝐷 (𝜔𝑚)

[
⟨−𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔 ) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔 )

]
d𝜔𝑚

= (Λ(𝜔𝑖 ) (𝜔𝑖 · 𝜔𝑔 ) (𝜔𝑜 · 𝜔𝑔 ) + Λ(𝜔𝑜 ) (𝜔𝑖 · 𝜔𝑔 ) (𝜔𝑜 · 𝜔𝑔 ),
= (Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )) (𝜔𝑖 · 𝜔𝑔 ) (𝜔𝑜 · 𝜔𝑔 ), (9)

thus, we get:

𝐺dist
2 (−𝜔𝑖 , 𝜔𝑜 ) =

1
Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

, if 𝜔𝑖 · 𝜔𝑔 > 0 (10)

If we use 𝜔𝑖 to denote the direction below the macrosurface, we
have the equivalence formulation:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
Λ(−𝜔𝑖 ) + Λ(𝜔𝑜 )

, if 𝜔𝑖 · 𝜔𝑔 < 0. (11)

Now we have the complete definition of the height-correlated
shadowing-masking function:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
−Λ(−𝜔𝑖 )+Λ(𝜔𝑜 ) , if 𝜔𝑖 · 𝜔𝑔 > 0,

1
Λ(−𝜔𝑖 )+Λ(𝜔𝑜 ) , if 𝜔𝑖 · 𝜔𝑔 ≤ 0. (12)

The height-correlated shadowing-masking function for the last
bounce is the same as the height-correlated shadowing-masking
function:

𝐺𝑖=𝑘
2 (𝜔𝑖 , 𝜔𝑜 ) = 𝐺dist

2 (𝜔𝑖 , 𝜔𝑜 ) . (13)

1.3 Height-correlated shadowing-masking function for the
middle bounce

For the middle bounce, the shadowing-masking function has differ-
ent meaning from the last bounce. For bounce 𝑖 (𝑖 < 𝑘), shadowing-
masking function𝐺𝑖<𝑘

2 (𝜔𝑖 , 𝜔𝑜 ) means the probability that the light
ray with incident direction𝜔𝑖 arrives at the surface and the outgoing
ray with direction 𝜔𝑜 is blocked.
If 𝜔𝑜 is below the macrosurface, the ray will always intersect

with the microgeometry, resulting in

𝐺𝑖<𝑘
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
1 + Λ(𝜔𝑖 )

, if 𝜔𝑜 · 𝜔𝑔 < 0. (14)

If 𝜔𝑜 is above the macrosurface, we derive a novel formula-
tion. Starting from the original definition of the height-correlated
shadowing-masking function [Heitz et al. 2016]:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ)𝐺dist

1 (𝜔𝑜 , ℎ)𝑃1 (ℎ)dℎ, (15)

where 𝑃1 (ℎ) is the height distribution function.
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We propose a novel formulation for the middle bounce from
Eqn. 15 :

𝐺𝑖<𝑘
2 (𝜔𝑖 , 𝜔𝑜 )

=

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ) (1 −𝐺dist

1 (𝜔𝑜 , ℎ))𝑃1 (ℎ)dℎ,

=

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ)𝑃1 (ℎ)dℎ −

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ)𝐺dist

1 (𝜔𝑜 , ℎ)𝑃1 (ℎ)dℎ,

= 𝐺dist
1 (𝜔𝑖 ) −𝐺dist

2 (𝜔𝑖 , 𝜔𝑜 ),

=
1

|Λ(𝜔𝑖 ) + 1| −
1

|Λ(−𝜔𝑖 ) | + Λ(𝜔𝑜 )
. (16)

Thus, the complete formulation of the middle bounce is:

𝐺𝑖<𝑘
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
|Λ(𝜔𝑖 )+1 | −

1
|Λ(−𝜔𝑖 ) |+Λ(𝜔𝑜 ) , if 𝜔𝑜 · 𝜔𝑔 > 0,

1
|Λ(𝜔𝑖 )+1 | , if 𝜔𝑜 · 𝜔𝑔 ≤ 0.

(17)

2 RECIPROCITY OF OUR MODELS

-

-
-

forward light path  inverse light path

Fig. 4. A subpath (d𝑖−1 to d𝑖−1) from the forward light path (green) and its
inverse (orange).

In this section, we analyze the reciprocity of our models (height-
uncorrelated and height-correlated). We first prove that height-
uncorrelated model has reciprocity, and then provide a counter
example to show that our height-correlated model doesn’t have
reciprocity.

2.1 Reciprocity of our height-uncorrelated model
As shown in Section 3.4, it’s obvious that the vertex terms have
reciprocity. Here, we prove the reciprocity of the segment term.
Since we are using a separable model for the shadowing-masking
function, the product of the shadowing terms of incident direction
𝜔𝑖 and exit direction 𝜔𝑜 have reciprocity, given any light paths.
Thus, without loss of generality, we only proof the reciprocity of
the internal direction.

Given a direction d𝑖 in the forward path, as shown in Fig. 4 (left),
its segment term is computed by:

𝑠forward𝑖 = 𝑒𝑖𝑝𝑖 , (18)

where 𝑒𝑖 = 1, since the direction is below the macrosurface, and 𝑝𝑖
is defined as:

𝑝𝑖 = 𝐺1 (−d𝑖 ,
−d𝑖 + d𝑖+1

∥ − d𝑖 + d𝑖+1∥
) = 𝐺dist

1 (−d𝑖 ). (19)
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Fig. 5. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough diffuse material with roughness 0.25. 𝜃 is the angle between
the incident direction and the normal to the macrosurface.
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Fig. 6. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough diffuse material with roughness 0.5. 𝜃 is the angle between
the incident direction and the normal to the macrosurface.
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Fig. 7. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough diffuse material with roughness 1.0. 𝜃 is the angle between
the incident direction and the normal to the macrosurface.
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Fig. 8. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for anisotropic rough diffuse material with roughness 1.0 and 0.1. 𝜃 is
the angle between the incident direction and the normal to themacrosurface.
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Fig. 9. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough conductor material with roughness 0.25. 𝜃 is the angle
between the incident direction and the normal to the macrosurface.
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Fig. 10. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for rough conductor material with roughness 0.5. 𝜃 is the
angle between the incident direction and the normal to the macrosurface.
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Fig. 11. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for rough conductor material with roughness 1.0. 𝜃 is the
angle between the incident direction and the normal to the macrosurface.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.



Supplemental Materials: Position-free Multiple-bounce Computations for Smith Microfacet BSDFs • 1:7

Ours
(height-uncorr.)

Ours
(height-corr.)

SimulatedHeitz et al.

= 0.730

= 0.789

= 0.985

= 0.722

= 0.783

= 0.900

= 0.966

= 0.722

= 0.783

= 0.903

= 0.987

= 0.722

= 0.903

= 0.987

= 0.917

= 0.252

= 0.190

= 0.010

= 0.268

= 0.209

= 0.099

= 0.034

= 0.270

= 0.210

= 0.095

= 0.012

= 0.265

= 0.207

= 0.095

= 0.013

= 0.075

= 0.783

=
 0

.5
=

 0
.0

=
 1

.5
=

 0
.5

=
 0

.0
=

 1
.0

=
 1

.5
=

 1
.0b

ou
n

ce
 =

 1
b

ou
n

ce
 =

 2

 x10 x10 x10 x10

 x2 x2 x2 x2

 x2 x2 x2 x2

 x2 x2 x2 x2

 x5 x5 x5 x5

 x5 x5 x5 x5

 x10 x10 x10 x10

Fig. 12. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for anisotropic rough conductor material with roughness
1.0 and 0.1. 𝜃 is the angle between the incident direction and the normal to
the macrosurface.
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Fig. 13. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for rough dielectric material with roughness 0.25. 𝜃 is the
angle between the incident direction and the normal to the macrosurface.
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Fig. 14. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for rough dielectric material with roughness 0.5. 𝜃 is the
angle between the incident direction and the normal to the macrosurface.
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Fig. 15. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for rough dielectric material with roughness 1.0. 𝜃 is the
angle between the incident direction and the normal to the macrosurface.
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Fig. 16. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for anisotropic rough dielectric material with roughness 1.0
and 0.1. 𝜃 is the angle between the incident direction and the normal to the
macrosurface.

Thus, we have

𝑠forward𝑖 = 𝐺dist
1 (−d𝑖 ) =

1
1 + Λ(−d𝑖 )

. (20)

Given a direction in the inverse path, as shown in Fig. 4 (right),
its segment term is computed by:

𝑠 inverse𝑖 = 𝑒𝑖𝑝𝑖 , (21)

𝑒𝑖 = 1 −𝐺1 (−d𝑖 ,
−d𝑖 + d𝑖+1

∥ − d𝑖 + d𝑖+1∥
) = 1 −𝐺dist

1 (−d𝑖 )

= 1 − 1
1 + Λ(−d𝑖 )

=
Λ(−d𝑖 )

1 + Λ(−d𝑖 )

=
Λ(−d𝑖 )

1 + Λ(−d𝑖 )
, (22)

𝑝𝑖 = 𝐺1 (d𝑖 ,
−d𝑖−1 + d𝑖

∥ − d𝑖−1 + d𝑖 ∥
)

= 𝐺dist
1 (d𝑖 )

=
−1

1 + Λ(d𝑖 )

=
1

Λ(−d𝑖 )
. (23)

Thus, we have

𝑠 inverse𝑖 =
Λ(−d𝑖 )

1 + Λ(−d𝑖 )
1

Λ(−d𝑖 )

=
1

1 + Λ(−d𝑖 )
= 𝑠forward𝑖 (24)

Finally, we prove that the segment term has the reciprocity. Al-
though the direction of d𝑖 is pointing downwards in our proof, the
proof still holds, when it points upwards.
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Fig. 17. The difference between renderings using 𝜌 (𝜔𝑖 , 𝜔𝑜 ) and 𝜌 (𝜔𝑜 , 𝜔𝑖 ) .
The difference is because of the noise, rather than the model. We show the
histogram of the difference. From its distribution, we can conclude that the
expectation of the difference image is about zero.

2.2 Reciprocity of our height-correlated model
We use the same example as shown in Fig. 4, to demonstrate that
our height-correlated model does not have reciprocity. Since the
vertex terms are symmetric, the main reason for non-reciprocity is
the segment term.
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Given the forward path shown in Fig. 4 (left), the segment term
is:

𝑠forward𝑖 = 𝐺
(𝑖<𝑘)
2 (−d𝑖−1, d𝑖 )𝐺 (𝑖=𝑘)

2 (−d𝑖 , d𝑖+1)

= 𝐺dist
1 (−d𝑖−1)𝐺dist

2 (−d𝑖 , d𝑖+1)

=
1

1 + Λ(−d𝑖−1)
1

1 + Λ(−d𝑖 ) + Λ(d𝑖+1)
. (25)

The segment term for the inverse path shown in Fig. 4 (right) is:

𝑠 inverse𝑖 = 𝐺
(𝑖<𝑘)
2 (−d𝑖 , d𝑖+1)𝐺 (𝑖=𝑘)

2 (d𝑖 ,−d𝑖−1)

=

[
𝐺dist
1 (d𝑖+1) −𝐺dist

2 (−d𝑖 , d𝑖+1)
]
𝐺dist
2 (d𝑖 ,−d𝑖−1)

=

[
1

1 + Λ(d𝑖+1)
− 1
1 + Λ(d𝑖+1) + Λ(−d𝑖 )

]
1

Λ(−d𝑖 ) + Λ(−d𝑖−1)

=
Λ(−d𝑖 )

(1 + Λ(d𝑖+1)) (1 + Λ(d𝑖+1) + Λ(−d𝑖 ))
1

Λ(−d𝑖 ) + Λ(−d𝑖−1)
.

(26)

Since 𝑠forward
𝑖

≠ 𝑠 inverse
𝑖

, our height-correlated model does not have
reciprocity.

3 LOBE VISUALIZATION
In Figs. 5 and the following eleven figures, we compare the visu-
alized lobes for individual bounce between our methods (height-
uncorrelated and height-correlated), Heitz et al. [2016] and simu-
lated data which is obtained by ray tracing on a generated surface
with Beckmann distribution [Heitz and Dupuy 2015]. We perform
the comparison on rough diffuse (albedo set as 1), rough conduc-
tor (Fresnel set as 1) and rough dielectric BSDFs, considering both
isotropic (𝛼 = 0.25, 0.5, 1) and anisotropic (𝛼 = (1.0, 0.1)) cases. We
visualize the lobes with 𝜔𝑖 elevation angles of 0.0, 0.5, 1.0 and 1.5 ra-
dians. 𝐸𝑟 and 𝐸𝑡 denote the total amount of reflected and transmitted
energies, respectively.

For all the bounces with all the incident angles, our height-corre-
lated model produces very similar results as Heitz et al. [2016], while
our height-uncorrelated model has larger difference from Heitz et
al. [2016] mostly at grazing angles.

4 CONVERGENCE VALIDATION
In Figure 18, we show the Mean Square Error (MSE) as a function of
varying rendering time for our method (BDPT, height-correlated)
and Heitz et al. [2016] in the Single Slab scene with varying rough-
ness, considering directional lighting only. With only two samples
per pixel, our method is able to produce very close result to the
ground truth, while Heitz et al. [2016] produces result with a lot of
noise. Increasing the number of samples (rendering time) improves
the quality for both methods, but our method remains consistently
better.
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